a,b,c,d是一般四次方程的四个根,对应S4的伽罗瓦分解如下图所示:
24个置换中有六个值,这六个值恰好对应S3,生成元是翻转和旋转b,c,d,如下图所示:
也就是说,S4群对克莱因四元群V4的商群,恰好是S3群,V4群可以看成是C2群的直积,可解,S3群可解,所以四次方程一定可解,其可解群列是:
所以四次方程扩域2*3*2*2=24次=4!,即可得到根域,deepseek得到的答案:
预解式的选取并不是唯一的,比如知道S4有一个D4子群,它是8阶的,我们可以根据D4去设计在8种置换下,其值保持不变的有理式,比如有理式:
在S4的24种置换下只有三个值,这样,方程
必然可以降阶为3次方程(y1,y2,y3是D4群的置换结果,牛顿定理保证了其可以转化为基本对陈多项式,从而可以用系数域表示),利用三次方程求根公式得到.
回过头来反思一下,为何伽罗瓦群公里第三条要求群运算是封闭的,大概就是因为只有满足封闭性的条件下,任何群作用的组合都是群内的元素,我们才能找到(穷尽)这样一系列关于根的有理式,无论在怎样的置换下,得到的值总是固定的,实现根式扩张。
ds的回答,保持多项式不变的群确实是D4群:
cayley图表示,克莱因四元群是D4群的一个正规子群,子群和陪集构成了一个十字交叉的形状。
实际上,S4群有三个D4子群,虽然它们不是正规的,但是可以利用D4构造根的有理式,从而得到以有理式为根的拉格朗日预解式,这三个D4群分别是:
显然D4群并非S4的正规子群,因为正规子群要求,若存在多个共轭子群,则单个子群不可能是正规的,就不可能出现上面三个D4子群了.
但是好像仍然能够用D4群进行中间扩域。四次方程的可解性由S₄的可解性保证(S₄的正规子群链为 )和D4无关,但貌似尽管D4非正规,但预解式的存在允许直接构造根式解,无需依赖D4的正规性,这里还不太明白,貌似似乎是比伽罗瓦大定理更弱的一个条件。