四次方程S4群的伽罗瓦分解

a,b,c,d是一般四次方程的四个根,对应S4的伽罗瓦分解如下图所示:

24个置换中有六个值,这六个值恰好对应S3,生成元是翻转和旋转b,c,d,如下图所示:

也就是说,S4群对克莱因四元群V4的商群,恰好是S3群,V4群可以看成是C2群的直积,可解,S3群可解,所以四次方程一定可解,其可解群列是:

S4\triangleright S3\triangleright C3\triangleright V4\triangleright C2\triangleright e

所以四次方程扩域2*3*2*2=24次=4!,即可得到根域,deepseek得到的答案:

预解式的选取并不是唯一的,比如知道S4有一个D4子群,它是8阶的,我们可以根据D4去设计在8种置换下,其值保持不变的有理式,比如有理式:

y_1=(x_1+x_2)(x_3+x_4) \\ \\ y_2=(x_1+x_3)(x_2+x_4) \\ \\ y_3 = (x_1+x_4)(x_2+x_3)

在S4的24种置换下只有三个值,这样,方程

(x-y_1)(x-y_2)(x-y_3)=0

必然可以降阶为3次方程(y1,y2,y3是D4群的置换结果,牛顿定理保证了其可以转化为基本对陈多项式,从而可以用系数域表示),利用三次方程求根公式得到y_1,y_2,y_3.

回过头来反思一下,为何伽罗瓦群公里第三条要求群运算是封闭的,大概就是因为只有满足封闭性的条件下,任何群作用的组合都是群内的元素,我们才能找到(穷尽)这样一系列关于根的有理式,无论在怎样的置换下,得到的值总是固定的,实现根式扩张。

ds的回答,保持多项式(x_1+x_2)(x_3+x_4)不变的群确实是D4群:

cayley图表示,克莱因四元群是D4群的一个正规子群,子群和陪集构成了一个十字交叉的形状。

实际上,S4群有三个D4子群,虽然它们不是正规的,但是可以利用D4构造根的有理式,从而得到以有理式为根的拉格朗日预解式,这三个D4群分别是:

显然D4群并非S4的正规子群,因为正规子群要求gD4g^{-1}=D4,g\in S4,若存在多个共轭子群,则单个子群不可能是正规的,就不可能出现上面三个D4子群了.

但是好像仍然能够用D4群进行中间扩域。四次方程的可解性由S₄的可解性保证(S₄的正规子群链为 S4\triangleright S3\triangleright C3\triangleright V4\triangleright C2\triangleright e)和D4无关,但貌似尽管D4非正规,但预解式的存在允许直接构造根式解,无需依赖D4的正规性,这里还不太明白,貌似似乎是比伽罗瓦大定理更弱的一个条件。

解构A4


结束

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值