人脸变形算法——MLS

目录

论文信息

基础介绍

MLS

Affine Deformation

Similarity Deformation

Rigid Deformation


论文信息

论文链接:《Image Deformation Using Moving Least Squares》

基础介绍

刚性变换:平移+旋转(只有物体的位置和朝向发生改变,而形状不变,得到的变换成为刚性变形)

相似变换:平移+旋转+缩放

仿射变换:平移+旋转+缩放+倾斜+翻转

MLS

Moving Least Squares Deformation

  • p:一列控制顶点
  • q:控制顶点变换后的坐标

给定图上的一点v,求解一个最优的放射变换来最小化

其中\large ^{p_{i}}\large ^{q_{i}}都是行向量,每行的分量为点的坐标,权重w_{i}有如下的形式

因为该最小二乘问题中的权重w_{i}独立于v变形后的点,所以我们称之为移动最小二乘最小化。对于不同的v,可以得到不同的变换l_{v}(x)。由于l_{v}(x)是仿射变换,所以可以写成

 令原始的优化函数对T求偏导并令其为0,解出

其中q^{*}p^{*}}是原来一系列控制顶点的加权质心,

 所以有

所以原优化函数可以修改为

 

其中\hat{p}_{i}=p_{i}-p^{*},\hat{q}_{i}=q_{i}-q^{*},考虑二维图像时,M就是一个2x2的矩阵。 

Affine Deformation

要找一个仿射变换来极小化方程(4),直接用古典方法求解优化问题得

从而我们可以写成仿射变换的表达式

又因为\large ^{p_{i}}是固定的,所以上式可以变为

其中\large ^{A_{j}}可以预计算

直接做仿射变换会存在一些问题:原图中的网络点阵是排列整齐的,变换到目标图像中后便不再排列整齐,由于是浮点数运算,所以有一些点会变换到目标图的同一个点上,而目标图的有一点没有任何点从原图变换过来,这就会导致变换之后的图像产生白色的镂空。解决该问题的一个比较简单的办法就是对原始图像做逆变换,这相当于在目标图像的网格点阵上计算原图中对应的点,即已知f_{a}(v)求解对应v。计算公式如下:

Similarity Deformation

实际上仿射变换包含了非一致性的平移和缩放,实际上的许多物体并不会发生这么复杂的变化。相似变换是仿射变换的一个子类,仅包含平移、旋转和一致的缩放。为了满足相似变换的性质,我们限制矩阵M满足M^{T}M=\lambda ^{2}I,\exists\lambda。如果M是分块矩阵,有M=(M_{1},M_{2})的形式,其中M_{1},M_{2}的长度为2的列向量,那么对于M的限制可以变为M_{1}^{T}M_{1}=M_{2}^{T}M_{2}=\lambda_{2},并且M_{1}^{T}M_{2}=0。这个限制意味着,其中是一个作用于二维向量的算子使得。这样原来的目标方程(4)可以修改为

该二次方程有唯一的最优值,从而可以得到最优点M

其中\mu _{s}=\sum _{i}\omega _{i}\hat p_{i}\hat p_{i}^{T}。从而得到最终的变换公式

其中A_{i}

类似的我们可以得到逆相似变幻的公式

其中

Rigid Deformation

进一步地,我们要求变幻中不包括一致缩放,即限制变为M^{T}M=I。先给出一个定理,这个定理说明了刚性变换和相似变换的关系。

定义一.令C是可以极小化如下相似问题的矩阵

如果C写成\lambda R的形式,R是一个旋转矩阵,\lambda是一个标量,那么旋转矩阵R极小化如下的刚性问题

根据定理我们知道刚性变化恰好就是方程(8),除了把其中的\mu _{s}替换为\mu _{r}

其中A _{i}由式(9)定义,最后的变换公式为

上述变换公式不易求的其逆变换,所以近似的使用如下逆变换

其中

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值