线性代数:向量、张量、矩阵和标量

线性代数:向量、张量、矩阵和标量

背景

在线性代数中,向量、张量、矩阵和标量都属于基础概念,特别是最近AI的爆火,向量和张量的概念也越来越普及,本文将介绍下这些基本概念。
张量、向量、标量、矩阵关系图

1. 标量(Scalar)

1.1 定义和表示

标量是数学中的一个基本概念,它表示一个单独的实数,没有方向。在数学表示中,我们通常用小写字母表示标量,例如 a 或 x。

1.2 例子

  • 温度(32℃)
  • 质量(62kg)
  • 速度(102km/h)

标量是我们日常生活中常见的量,它们具有大小但没有方向。

在python代码中表示

	x = 1
	# 或者可以表示为0阶张量
    x = np.array(1)
    print(x.ndim)

2. 向量(Vector)

2.1 定义和表示

向量是有序的一维数组,向量的每个元素都是标量。每个元素都有一个索引,表示其在向量中的位置。在数学表示中,我们通常用小写粗体字母表示向量,如 v

2.2 例子

  • 位移(向东200米)
  • 力(向左10牛米)

向量不仅有大小,还有方向,因此它可以表示在空间中的运动或力的作用方向。

2.3 代码和图示

一个三维向量可以表示为
v = [ v 1 v 2 v 3 ] v = \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix} v=[v1v2v3]
在python代码中的例子

	v = np.array([1, 2, 3])
    print(v.ndim)  # = 1

3. 矩阵(Matrix)

3.1 定义和表示

矩阵是一个二维数组,矩阵的每个元素都是标量,这些元素按行和列排列。在数学表示中,我们通常用大写字母表示矩阵,如 A。

3.2 例子

  • 图像的像素值
  • 线性变换

代码和图示

一个 m x n 的矩阵 A 可以表示为:
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} A= a11a21am1a12a22am2a1na2namn

在python代码中例子

	m = np.array([[1, 2], [3, 4]])
    print(m.ndim)  # = 2

4. 张量(Tensor)

4.1 定义和表示

在线性代数里面可以简单的将张量理解为一个多维数组,可以包含标量、向量和矩阵。在数学表示中,我们通常用大写粗体字母表示张量,如 T

4.2 例子

  • 神经网络中的输入
  • 多模态数据的表示,如图片语音视频等

代码和图示

在深度学习中,一个三阶张量 T 可以用分块矩阵的方式表示:

T = [ A B C D E F G H I ] \mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \\ \mathbf{D} & \mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H} & \mathbf{I} \end{bmatrix} T= ADGBEHCFI

这里A、B、C、D等可以是标量、向量或矩阵。

之间的关系

  • 标量是零阶张量,向量是一阶张量,矩阵是二阶张量。
  • 张量的阶数表示它包含的维度数量,不止是3阶张量,张量可以是无数阶。

在python中的例子,可以通过ndim来输出张量阶数

import numpy as np

if __name__ == '__main__':
    x = np.array(1)
    print(x.ndim)  # = 0

    v = np.array([1, 2, 3])
    print(v.ndim)  # = 1

    m = np.array([[1, 2], [3, 4]])
    print(m.ndim)  # = 2

    t = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
    print(t.ndim)  # = 3

    t = np.array([[[[1, 2], [3, 4]], [[5, 6], [7, 8]]], [[[9, 10], [11, 12]], [[13, 14], [15, 16]]],
                  [[[17, 18], [19, 20]], [[21, 22], [23, 24]]], [[[25, 26], [27, 28]], [[29, 30], [31, 32]]]])
    print(t.ndim)  # = 4
  • 从这种角度来看,万物皆张量
  • 21
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
标、向量矩阵张量线性代数中的重要概念,它们之间存在一定的联系。 - 标量是0维空间中的一个点,它只有大小没有方向,可以看作是一个单独的数值。 - 向量是一维空间中的一条线,它有大小和方向。向量可以由一组有序的数值组成,这些数值称为向量的分量。向量可以表示位移、速度、力等物理量。 - 矩阵是二维空间的一个面,它由多个行和列组成。矩阵可以看作是多个向量的排列,每个向量作为矩阵的一列或一行。矩阵可以表示线性变换、方程组等。 - 张量是三维空间中的一个体,它可以看作是多个矩阵的排列。张量可以有多个维度,每个维度对应一个矩阵张量可以表示物理领域中的物质性质、场等。 因此,可以总结为:向量标量组成,矩阵向量组成,张量矩阵组成。它们在维度和元素的排列方式上存在不同,但都是线性代数中用于描述数学和物理问题的重要工具。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [标量向量矩阵张量之间的区别和联系](https://blog.csdn.net/sinat_29957455/article/details/117396685)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五只鸭子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值