【机器学习数学基础】之线性代数标量与向量运算(易混淆点)

一. 标量与向量

(一). 标量:

       标量是一个表示大小的数字,一般用普通小写字母表示,如 a .

(二). 向量:

       一个同时具有大小与方向的几何对象,如 【a, b】,一般用粗体的小写字母表示,如x
       向量又分为行向量列向量

行向量 [ a b ] \begin{bmatrix} a & b \end{bmatrix} [ab]

列向量 [ a b ] \begin{bmatrix} a\\ b \end{bmatrix} [ab]

(三). 向量的模:

∣ a ∣ = x 1 2 + x 2 2 + . . . + x N 2 \left | a \right | = \sqrt{x_{1}^{2} + x_{2}^{2}+...+x_{N}^{2}} a=x12+x22+...+xN2

(四). 向量的范数:

∥ a ∥ 1 = ∑ ∣ x i ∣ \left \| a \right \|_{1} = \sum \left | x_{i} \right | a1=xi
∥ a ∥ 2 = x 1 2 + x 2 2 + . . . + x N 2 \left \| a \right \|_{2} = \sqrt{x_{1}^{2} + x_{2}^{2}+...+x_{N}^{2}} a2=x12+x22+...+xN2
∥ a ∥ ∞ = m a x ∣ x i ∣ \left \| a \right \|_{ \infty } = max\left | x_{i} \right | a=maxxi

二. 向量的运算

(一). 向量的加法:

       行向量与列向量同理
a = [ 2 3 ] a = \begin{bmatrix} 2 &3 \end{bmatrix} a=[23]
b = [ 4 5 ] b= \begin{bmatrix} 4 &5 \end{bmatrix} b=[45]
a + b = [ 2 3 ] + [ 4 5 ] = [ 6 8 ] a + b = \begin{bmatrix} 2 &3 \end{bmatrix} + \begin{bmatrix} 4 &5 \end{bmatrix} = \begin{bmatrix} 6 &8 \end{bmatrix} a+b=[23]+[45]=[68]

(二). 向量的数乘:

       行向量于列向量同理
a = [ 2 3 ] a =\begin{bmatrix} 2 & 3 \end{bmatrix} a=[23]
c = 2 c = 2 c=2
c ⋅ a = 2 × [ 2 3 ] = [ 2 × 2 2 × 3 ] = [ 4 6 ] c \cdot a = 2\times \begin{bmatrix} 2 & 3 \end{bmatrix} = \begin{bmatrix} 2\times 2 & 2\times 3 \end{bmatrix} = \begin{bmatrix} 4 & 6 \end{bmatrix} ca=2×[23]=[2×22×3]=[46]

(三). 向量的乘积(点积)

a = [ a 1 a 2 . . . a n ] a = \begin{bmatrix} a_{1}&a_{2} &...a_{n} \end{bmatrix} a=[a1a2...an]
b = [ b 1 b 2 . . . b n ] b = \begin{bmatrix} b_{1}&b_{2} &...b_{n} \end{bmatrix} b=[b1b2...bn]
a ⋅ b = ∑ i = 1 n a i b i = a 1 b 1 + a 2 b 2 + . . . a n b n a\cdot b = \sum_{i=1}^{n} a_{i}b_{i} = a_{1}b_{1}+a_{2}b_{2}+...a_{n}b_{n} ab=i=1naibi=a1b1+a2b2+...anbn
       点积还可以理解为
a ⋅ b = ∣ a ⋅ b T ∣ a\cdot b = \left |a\cdot b^{T} \right | ab= abT b T 是行向量 b 的转置 b^{T} 是行向量b的转置 bT是行向量b的转置 ∣ a ⋅ b T ∣ 是 a ⋅ b T 的行列式 \left |a\cdot b^{T} \right |是a\cdot b^{T}的行列式 abT abT的行列式
       向量的点积式子要与矩阵的点积式子一起记忆,以免与矩阵的元素积弄混。

三. 矩阵的定义:

(一). 矩阵:

       由 M X N 个数排列成M行,N列的表:
[ a 11 . . . a 1 N . . . . . . . . . a M 1 . . . a M N ] \begin{bmatrix} a_{11} & ... &a_{1N} \\ ...&... & ...\\ a_{M1}& ... & a_{MN} \end{bmatrix} a11...aM1.........a1N...aMN

四. 矩阵的运算

(一). 矩阵的加法

       矩阵的加法等于每个矩阵对应元素的相加
[ a 11 . . . a 1 N . . . . . . . . . a M 1 . . . a M N ] + [ b 11 . . . b 1 N . . . . . . . . . b M 1 . . . b M N ] = [ a 11 + b 11 . . . a 1 N + b 1 N . . . . . . . . . a M 1 + b M 1 . . . a M N + b M N ] \begin{bmatrix} a_{11} & ... &a_{1N} \\ ...&... & ...\\ a_{M1}& ... & a_{MN} \end{bmatrix} + \begin{bmatrix} b_{11} & ... &b_{1N} \\ ...&... & ...\\ b_{M1}& ... & b_{MN} \end{bmatrix} = \begin{bmatrix} a_{11}+b_{11} & ... &a_{1N}+b_{1N} \\ ...&... & ...\\ a_{M1}+b_{M1}& ... & a_{MN}+b_{MN} \end{bmatrix} a11...aM1.........a1N...aMN + b11...bM1.........b1N...bMN = a11+b11...aM1+bM1.........a1N+b1N...aMN+bMN

(二). 矩阵的乘法
1. 矩阵的点积

       矩阵的点积是矩阵的正常乘法运算,即

A为 M行N列的矩阵
[ a 11 . . . a 1 N . . . . . . . . . a M 1 . . . a M N ] \begin{bmatrix} a_{11} & ... &a_{1N} \\ ...&... & ...\\ a_{M1}& ... & a_{MN} \end{bmatrix} a11...aM1.........a1N...aMN
B为N行K列的矩阵
[ b 11 . . . b 1 K . . . . . . . . . b N 1 . . . b N K ] \begin{bmatrix} b_{11} & ... &b_{1K} \\ ...&... & ...\\ b_{N1}& ... & b_{NK} \end{bmatrix} b11...bN1.........b1K...bNK
       两个矩阵的点积即矩阵乘积要求矩阵A的列数必须与矩阵B的行数相等。
       M X N的矩阵A与N X K 的矩阵B的点积结果为 M X K 的矩阵D:
[ a 11 . . . a 1 N . . . . . . . . . a M 1 . . . a M N ] ⋅ [ b 11 . . . b 1 K . . . . . . . . . b N 1 . . . b N K ] = [ d 11 . . . d 1 K . . . . . . . . . d M 1 . . . d M K ] = d i j \begin{bmatrix} a_{11} & ... &a_{1N} \\ ...&... & ...\\ a_{M1}& ... & a_{MN} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & ... &b_{1K} \\ ...&... & ...\\ b_{N1}& ... & b_{NK} \end{bmatrix} =\begin{bmatrix} d_{11} & ... &d_{1K} \\ ...&... & ...\\ d_{M1}& ... & d_{MK} \end{bmatrix} = d_{ij} a11...aM1.........a1N...aMN b11...bN1.........b1K...bNK = d11...dM1.........d1K...dMK =dij
d i j 的表达式为 d i j = ∑ k = 1 N a i k b k j d_{ij}的表达式为 d_{ij} = \sum_{k=1}^{N}a_{ik}b_{kj} dij的表达式为dij=k=1Naikbkj
矩阵点积要与向量的点积一起记忆,都有行列的限制,是正常的矩阵乘积。

2. 元素积

       矩阵的元素积为两个矩阵对应元素的乘积,记为
A ⊙ B A\odot B AB
[ a 11 . . . a 1 N . . . . . . . . . a M 1 . . . a M N ] ⋅ [ b 11 . . . b 1 N . . . . . . . . . b M 1 . . . b M N ] = [ e 11 . . . e 1 N . . . . . . . . . e M 1 . . . e M N ] = e i j \begin{bmatrix} a_{11} & ... &a_{1N} \\ ...&... & ...\\ a_{M1}& ... & a_{MN} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & ... &b_{1N} \\ ...&... & ...\\ b_{M1}& ... & b_{MN} \end{bmatrix} =\begin{bmatrix} e_{11} & ... &e_{1N} \\ ...&... & ...\\ e_{M1}& ... & e_{MN} \end{bmatrix} = e_{ij} a11...aM1.........a1N...aMN b11...bM1.........b1N...bMN = e11...eM1.........e1N...eMN =eij
e i j 的表达式为 e i j = a i j b i j e_{ij}的表达式为 e_{ij} =a_{ij}b_{ij} eij的表达式为eij=aijbij
       重点:矩阵A的行数与列数同矩阵B的行数与列数是完全一样的
       这是与矩阵的点积完全不同的地方,要记牢!!!

       关注公众号【计算机视觉与深度学习】,获取海量计算机视觉与深度学习资源,实战项目源码,最新论文下载,大厂面试经验!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值