一本畅销12万册的小书,让孩子彻底看到了数学之美!

本书作者马库斯•杜•索托伊以通俗易懂的方式讲解数学,涵盖质数、概率、密码等内容,每章附带数学难题,如黎曼猜想,使数学变得有趣且吸引人,适合青少年阅读,引发对数学科学的兴趣。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5fda85c2dcae1051d76f6244e8104666.png

83b0045dc9525dca99bf969be21d5140.jpeg

要如何教(写),才能让孩子觉得数学是有趣的?这大概是无数老师、家长和科普作家最大的疑问,然而这本书做到了!

《神奇的数学》这本书的作者马库斯•杜•索托伊是牛津大学数学教授英国皇家学会研究员,美国数学学会成员。他是一位不按常理出牌的数学天才,他创造了“流行数学”的概念,将复杂的数字和数学概念用形象生动、通俗易懂的语言表达出来,被誉为“百家讲坛”式的学者。

他是BBC科普节目嘉宾、TED演讲嘉宾,《泰晤士报》和《卫报》专栏作家,曾获伦敦数学学会的贝维克奖、皇家学会的法拉第奖,并在2004年被英国《周日独立报》评为英国最杰出的科学家之一,被英国《绅士》杂志列为全英40岁以下最具影响力的百位人物之一。

他常年主持青少年数学科普讲座,擅长借助孩子们感兴趣的话题,引出无所不在的数学知识。在本书,你会了解到神秘莫测的质数、变化多端的形状、游移不定的概率、深藏不露的密码、能掐会算的预测术,每章还会介绍一个悬赏百万美元的著名数学难题,仿佛向读者指示一条通往数学科学巅峰的攀登之路。

也因此,这本书写的非常有趣,自上市之初就受到了很多家长和孩子的喜欢,甚至被央视CCTV2 第一时间 栏目重点推荐好书;中国科学院院士、计算数学家汤涛等推荐;常年入选各省教育厅中小学生推荐阅读书目,如2022年第十五届广东省教育厅开展中小学“暑假读一本好书”推荐书目。累计畅销12万册。

图书 | 《神奇的数学:牛津教授给青少年的讲座》

作者 | 马库斯•杜•索托伊(Marcus du Sautoy)

译者 | 程玺

1,2,3,4,5,……这些数字看上去非常简单,只要为前一个数字加上1,就可得出后一个数字。但如果数字不存在,我们就很迷茫。阿森纳对阵曼联,谁赢谁输,我们无从知晓,两个队都有机会。想在本书的索引中查询些什么吗?好吧,在书的中间部分找到某个数字就能中彩票,但具体在哪里无法确知。而彩票本身呢?如果没有数字的话,彩票本身便失去了存在的可能。数字这门语言在我们了解世界的过程中发挥着根本性的重要作用,这一点的确是非常神奇的。

即使在动物王国中,数字也是至关重要的。一群动物会基于他们对敌群数量的判断来决定是迎战还是逃离。它们的求生本能部分取决于一种数学能力,不过,在数字显而易见的简洁性背后,还隐藏着一个巨大的谜团。

2,3,5,7,11,13,……这些数字都是质数,即不可分解因子的数字。质数是其他所有数字的基石,就像是数学世界里的氢元素和氧元素。作为数字中的主要角色,它们就像是镶嵌在无穷无尽的数字链条之上的一颗颗闪烁的宝石。

尽管质数十分重要,但仍是人类追求知识的道路上最难解的谜团之一。我们至今无法找到所有质数,因为没有能逐个算出质数的神奇公式。它们就像是埋在地底的宝藏,但无人握有藏宝图。

我将介绍人类已经掌握的质数知识,看看世界各地的不同文化是如何尝试对质数进行研究和记录的,以及音乐家们如何用其探索切分音的节奏。我们还要弄清楚,人类为何利用质数与外星人沟通,以及质数为何有助于确保互联网信息的安全等。在本章的结尾,我会介绍一个关于质数的数学谜团,如果你能破解这一谜团,就会得到一百万美金的奖励。不过,在了解这个数学大难题之前,我们先来看一下这个时代最热门的一个数字谜团。

1

贝克汉姆为何选择23号球衣?

当大卫·贝克汉姆在2003年转会至皇家马德里时,对于他为何选择身披23号球衣这件事,坊间有很多猜测。大家都认为这是个很怪的选择,因为他之前在英格兰国家队和曼联队穿的都是7号球衣。但问题是,皇家马德里的7号球衣已经披在劳尔身上,而且这位西班牙斗牛士并不打算把7号战衣让给英国帅小伙。

贝克汉姆选择23号球衣这事儿催生了很多理论,其中最广为人知的是迈克尔·乔丹理论。皇马希望打入美国市场,从此就可以向美国庞大的人口销售大量的球衣。然而,足球(美国人喜欢称其为“英式足球”)在美国并不普及,美国人喜欢打篮球和棒球,这些比赛一场可以打到100比98分而且一定会分出胜负,而足球这种一场打满90分钟却可能以0比0结束或不分输赢的比赛,美国人认为毫无意义。

根据这个理论,皇马特意做了调查,结果发现,世界上最著名的篮球运动员当属芝加哥公牛队中得分最多的迈克尔·乔丹。而乔丹在整个球员生涯中身披的正是23号战袍,皇马只需将这个号码印在足球球衣的背后,然后双手合十,祈求与乔丹的这一点关联能够发挥它的魔力,帮助他们成功打入美国市场。

有些人觉得这一理论太过投机,但他们做出的推测更加阴险。比如,尤利乌斯·凯撒在被刺杀时正好身中23刀。那么贝克汉姆选择这个数字是不祥之兆吗?还有一些人认为,贝克汉姆做出的这一选择与他所喜爱的《星球大战》相关。(在第一部《星球大战》中,莉亚公主被关押在AA23号拘留处。)也可能贝克汉姆是混沌教派的一名秘密会员?混沌教派是一个崇尚混乱的当代邪教组织,他们神秘地痴迷于数字23。

然而当我看到贝克汉姆选择这个号码时,脑中即刻浮现的是一个数学猜想。23是个质数,质数只能被其本身和1整除。17和23都是质数,因为它们无法由两个更小的数字相乘得出,而15则不然,因为它能够分解为3×5。质数是数学中最重要的数字,因为所有其他整数均是由质数相乘得来。

以数字105为例,很明显,它能够被5整除,所以可以将其分解为5×21。5是质数,不可再拆分,但是,21就不是质数,还可以继续拆分为3×7。于是,105便可以写做3×5×7。这已经是我所能够拆分的极限了。最后得到的3、5、7均为质数,正是在这几个数的基础上,105才得以构建起来。以上拆分方法可以应用在所有数字上面,因为,除了1之外的任何一个数字,要么是质数,不可拆分,要么就不是质数,能被拆分为几个较小质数的乘积。

质数就是用于构建所有数字的砖块。正如分子是由原子组成的(有各种原子,氢原子、氧原子、钠原子、氯原子等),数字2、3、5就是数学世界里的氢原子、氦原子和锂原子。这就是它们在数学中拥有至高无上地位的原因。而对于皇马来说,显然它们也很重要。

进一步研究过皇马队后,我开始怀疑球队中或许就有一位“替补”数学家。在稍作分析后,我发现,当贝克汉姆做出转会皇马这个决定的时候,皇马的所有核心球员均身披质数号码的球衣:卡洛斯(后防中坚)3号,齐达内(中场核心)5号,劳尔和罗纳尔多(锋线尖刀)则分别为7号和11号。如此看来,贝克汉姆身披一件质数号码的球衣是不可避免的事情,而且他也非常喜爱这个号码,后来他转会洛杉矶银河队,坚持继续身披质数号码的球衣,希望用精彩的表现来赢得美国公众的芳心。

2e84e60ff8dd84c0590bbad49aa78762.png

图 1-1

这种推测或许听上去不合情理,为何本该追求逻辑和理性的数学家会如此无厘头呢?不过,在我自己的足球队维尔瓦哈克尼中,我同样也身披一件质数号码球衣,因此,我感到和身着23号球衣的那个家伙有着某种关联。我们这支星期日联赛球队当然没有皇马那么阵容浩大,而且队里也没有23号球衣,因此我选择了17号球衣,这是一个很棒的质数号码,后文我会再做介绍。但我们在第一个赛季的表现并不十分理想。我们在伦敦的超级星期日联赛乙级联赛中打比赛,最终以垫底收场。幸运的是,这已经是伦敦最低级别的联赛了,我们无需有降级的顾虑,摆在面前的只有升级这一条路。

但是,如何改善球队在联赛中的地位呢?或许皇马发现了什么吧,身披质数球衣是否会带来一些心理优势呢?我当时想,可能是我们的队员大多都身披非质数号码(比如8、10、15等)的球衣吧。于是,在之后的一个赛季,我说服大家改变球衣号码,披上质数号码的球衣:2、3、5、7,直到43。球队仿佛脱胎换骨。那一赛季结束后我们升到联赛甲级,但紧接着下个赛季很快又重新跌回乙级。看来,这种质数魔法的魔力只能发挥一个赛季。现在,我们正努力寻找一项新的数学理论,以此来鼓舞队员士气。

2

皇马守门员是否应身披1号战袍? 

如果说皇马的核心球员均身披质数号码的球衣,那么守门员该穿哪个号码的球衣呢?换句话说,以数学方式来看,1到底是不是质数呢?说是也行,说不是也行。(人人都爱这种类型的数学题目,正说反说都对。)两百年前,质数列表中是包含1的,它是第一个质数。毕竟1不可再分,因为唯一能整除它的整数就是它本身。但是现在,我们认为1不再是一个质数,因为质数最重要的一个属性就是,它们是构成所有数字的基石。只要我用一个质数乘以一个数字,便可得出一个新的数字。虽然1不可再分,但不管哪个数字乘以1后得到的依然还是它本身,基于这一点,我们把1排除在质数以外,这样一来,数字2便成了第一个质数。

最早发现质数潜能的当然并非皇马队。但究竟是哪个文明最先发现的呢?古希腊,中国,还是古埃及?事实上,在质数的发现问题上,数学家都败给了一种奇怪的小虫子。

3

为何美洲蝉中意17这个质数? 

在北美洲的森林里,栖息着一种生命周期十分古怪的蝉类。这些蝉藏于地下长达17年,其间甚少活动,只是吸吮树木的根茎以获得养分。而在第17个年头的五月份,这些蝉只会集体钻出地面,侵入森林,而侵入每英亩1森林的蝉只数量就多达百万。

蝉为了获取异性的注意会向着对方鸣叫。数量庞大的蝉只一起和鸣则会制造出极为宏大的噪音,以至于每过17年,当这种蝉进入活跃期时,当地居民往往会暂时搬离,以求耳根清净。鲍伯·迪伦便是因为1970年在普林斯顿大学攻读学位时听到周围森林里出现的刺耳蝉鸣,才写下他那首叫做《蝗虫岁月》的歌曲。

当这些蝉只成功吸引异性并完成交配后,每只雌蝉会在地面上产下大约600只卵。然后,经过6周的狂欢,所有蝉只寿终正寝,森林将重回长达17年的宁静。下一代的蝉卵在仲夏孵化,其幼虫坠落在森林地表,然后钻进泥土中,寻找到根茎以吸取养分。然后,经过又一个17年的轮回,下一场蝉的狂欢将重新上演。

这些蝉能感受到17年的时光流逝,绝对是让人不可思议的生物工程。几乎没有蝉只会提前一年或推迟一年出洞。多数动植物所遵循的年度生命周期都是受气温和季节的变化所影响的。那么这些蝉只每隔17个地球公转周期后现身一次,又是因为什么呢?人们对此并没有确切的解释。

对数学家来说,最令人好奇的一点就是这类蝉选择的数字17是一个质数。它们为什么要选择在地底下度过17年这个质数的周期呢,这仅仅是巧合吗?似乎并非如此。除了此类蝉以外,还有一些种类的蝉会在地下度过13年的时间,另外也有几种喜欢在地下生活7年。上述这些数字全是质数。而如果一只17年周期的蝉确实提早钻出地面,它不会只提早一年,而通常会提早4年,其生命周期也因此转变成13年,这一点颇为惊奇。似乎冥冥中果真有什么质数仙子在协助这些蝉只物种。然而,到底是什么在作祟呢?

科学家对此并没有给出明确的结论,到底蝉类为何青睐质数,这里有一个数学上的推测。首先讲明几点事实。一片森林中只能栖息一个种群的蝉只,因此该解释并不涉及不同种群共享一片森林的情况。在大部分年份中,总会有一种质数蝉种出现在美国某些地区。但是,2009年和2010年则是蝉类销声匿迹的年份。与此相反,2011年,数量庞大的13年周期的蝉种在美国东南部破土而出。(意外的是,2011本身刚好也是一个质数,但我并不认为蝉会聪明到这种程度。)

关于蝉的质数生命周期,迄今为止的最佳推测指出,森林中可能存在着一种蝉类的天敌,周期性地出现,而且其生命周期刚好对应蝉的出土时间,于是,它们便可饕餮不断涌现的美食了。接下来,物种的自然选择便开始发挥作用,保持质数生命周期的蝉类遭遇天敌的机会要远远小于非质数生命周期的蝉类。

fa3b54d3e7baa06a18e9dc400480f132.png

图 1-2 100年内,生命周期为7年的蝉类和生命周期为6年的天敌的遭遇情况

举例来说,假设其天敌每6年出现一次。那么7年生命周期的蝉类则会每42年才遭遇一次该天敌。相反,如果某种蝉类的生命周期是8年,那么其遭遇该天敌的周期则是24年;而生命周期为9年的蝉类与天敌的遭遇机会则更多,每18年就有一次。

11b454dc5c8776153bba142ab4052d39.png

图 1-3 100年内,生命周期为9年的蝉类和生命周期为6年的天敌的遭遇情况

在北美洲广阔的森林里面,究竟哪个物种占据了最大的一个质数,竞争似乎非常激烈。蝉类应对天敌的技巧非常娴熟,以至于其天敌要么饥饿而终,要么迁徙别处,只留下有着奇怪质数周期的蝉类独自狂欢。但我们接下来将要看到,蝉类并非世界上唯一一种利用质数作为切分节奏的生物。

4

关于质数的百万美元难题

本章的百万美元难题便是关于这些骰子的属性的:这些骰子是公平的吗?它们在数字世界中对质数的分配是恰如其分的吗?是否会有失偏颇?有时质数给得过多,有时却给得太少?这个问题便是黎曼猜想。

波恩哈德·黎曼是高斯在德国哥廷根的一名学生。他提出了一些十分成熟的数学运算,通过这些运算,我们才得以理解这些质数骰子是如何对质数进行分配的。通过某种叫做ζ 函数的东西、一些特殊的叫做虚数的数字,以及令人望而生畏的大量分析运算,黎曼得出了掌控这些骰子坠落过程的数学运算。根据他的分析,他相信这些骰子是公平的,但是无法证实这一点。证明黎曼猜想的重任就落到了后人的头上。

对于黎曼猜想的另一种诠释便是将质数和一个房间中的气体分子作比较。我们不可能知道分分秒秒每颗分子的具体位置,但物理学家告诉我们,气体基本上是均匀分布在房间内的,不可能屋子的其中一角聚集着大量分子,另一角却呈现出完全真空的状态。黎曼猜想差不多也是这样。它并不能真的帮助我们定位某个质数的具体位置,但是,它能确保这些质数是以一种公平合理但却随机的方式分布在数字世界中的。像这样的保证对数学家来说往往已经足够了,他们藉此便足够自信地在数字的海洋中遨游。不过,在这100万美元被人拿走之前,我们始终无法确定,随着我们越来越深入地探索数学宇宙的无穷边界,质数究竟会出现什么样的变化。

  推荐阅读

7c585693e4313fba5bda34f11451359b.png

《神奇的数学:牛津教授给青少年的讲座》

作者:马库斯•杜•索托伊

译者:程玺

英国最杰出的科学家之一、牛津大学数学教授马库斯•杜•索托伊写给青少年看的数学科普图书。

在本书,你会了解到神秘莫测的质数、变化多端的形状、游移不定的概率、深藏不露的密码、能掐会算的预测术,每章还会介绍一个悬赏百万美元的著名数学难题。

ee8632c6a4232c32d63a00ba71cbb867.jpeg

01

eb98925904a72ed070fe2fdfbc61bc74.png

《数学女孩》(1-6)

作者:结城浩

译者:朱一飞等

日本数学会强力推荐,内容由浅入深,绝赞的数学科普书,在动人的故事中走近数学,在青春的浪漫中理解数学。

《数学女孩》系列以小说的形式展开,从基础数学到费马大定理、哥德尔不完备定理、随机算法、伽罗瓦理论、庞加莱猜想,重点描述一群年轻人探寻数学之美的过程。

02

0a6362368cc40d7a4a59799cdf1a2930.png

《数学万花筒》(1-3)

作者:伊恩·斯图尔特

译者:张云、何生

青少年、初中培养数学思维学习兴趣,古今数学思想趣味故事怎样解题,用数学思维新方法探究数学之美。

课堂上学不到的数学,不会让人害怕的数学,有趣的数学游戏、谜题、故事和八卦的大杂烩,可从几乎任意一处着手阅读。

03

273d299f95a1b5d754f765f25d9b3f15.jpeg

《写给青少年的数学故事(上下)》(代数奇思、几何妙想)

作者:陈永明

套凝聚知名科普作家陈永明教授50多年教学经验的奇妙数学书:趣味阅读、广开眼界、深入思索。180多个精彩故事融合经典代数学例题,边读故事边学数学。

04

a0a3834d99829255fbe67f991ae2b13c.jpeg

《数之女王:数论与算法的奇幻故事》

作者:川添爱

译者:林明月

将数论和算法的数学知识融入奇幻小说,科学与趣味并存,让孩子在课外也能学好数学,提升思维能力,开发智力,与书中人物一起探索数学的奇妙世界。

“数论”与“算法”交织出的奇幻小说,被誉为数学版的《苏菲的世界》,用诡计、谜题生动展示数学魅力,借"数的法则"探索人性深处的成长。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值