作为一名编程入门者,我曾被“算法”两个字吓退过太多次。市面上的算法书动辄布满公式和符号,看得我直犯困。
但在接触了Aditya Y. Bhargava 的《算法图解(第2版)》后,我第一次意识到,原来算法也可以像漫画、像故事那样亲切、有趣,还能令人上瘾地“看下去”。
这不是一本枯燥的教材,而是一位真正理解初学者痛点的老师,用图画、比喻和幽默语言,带你轻松进入算法的世界。同时,中文翻译版非常流畅,初学者阅读也没压力。
代码+漫画:有趣又有料
可以说几乎每一章都配有插图——不是简单地用来“装饰”,而是主角本身。比如讲递归那章中,有个找钥匙的例子:你在一个盒子里翻找钥匙,但里面还有一堆嵌套盒子。作者画出一层一层的盒子,并把“递归”解释为:“你继续在这个新盒子里重复相同的动作,直到找到钥匙。”
再比如讲二分查找,书中用“猜数字”小游戏一步步引导,配上每一步如何缩小范围的图像。我看着图就理解了复杂度从 O(n) 到 O(log n) 的飞跃效果——不用公式也能明白原理。
不仅如此,所有示例代码都使用 Python3 编写,语法简洁,每段代码都配有详细注解,帮助我快速理解其背后的逻辑。
例子真实贴地气,看得懂
我特别喜欢这本书的例子都来自生活:选座、安排朋友顺序、搭公交找最短路径、给网站加缓存、避免重复投票等。这些例子不仅让我明白了算法可以“做什么”,还让我理解了“为什么要这样做”。
比如在讲哈希表时,作者把它比喻成有个朋友记得所有价格,问她比翻书快多了。这就解释了为什么哈希表查找是 O(1)。讲贪婪算法时用“安排教室上课”来讲覆盖问题,立刻让我联想到排会议室、日程表优化等实际工作中的例子。
这些例子接地气,不抽象,也非常容易复述和记忆,简直就是为“怕抽象”的人写的。
第 2 版亮点:树和图
我特地对比了第 1 版与第 2 版,发现第 2 版在树结构上做了非常大的提升。第 7、8 章新增了完整的树基础介绍、二叉搜索树、AVL 平衡树、B 树、Splay 树的图解与代码实现。尤其在 AVL 树章节中,作者用动画般的图讲清了“旋转”过程,这是我第一次真正弄懂平衡树的工作机制。
此外,第 6 和第 9 章分别讲了图的广度优先搜索(BFS)和 Dijkstra 算法,结合路径最短问题讲得非常直观,还配合了网络结构图,让我有种“终于知道 GPS 是怎么算路径的”顿悟感。
章节有衔接,学习流畅
整本书共有 13 章,前面几章是打基础,比如数组、递归、排序、哈希表等;中段讲树和图;后半段则是动态规划、贪婪算法、KNN 这种应用类算法。
我特别欣赏的是,作者不急于求成,每一章都按着“先图解→再代码→再案例→再练习”的节奏循序渐进。对于像我这样容易“跟不上”的读者来说,这是非常体贴的安排。
配套代码和代码仓库加分不少
书中配有大量小练习,有的是问你复杂度,有的是让你改写代码,耗时不长但能加深理解。
此外,书中所有代码都开源在 GitHub。
项目地址:
https://github.com/egonschiele/grokking_algorithms
也可以在线执行。我尝试运行过几个例子,帮助非常大。
适合这样的你
算法零基础,但希望构建“图像记忆”的人
想通过技术面试但讨厌“纯刷题”方式的学习者
希望通过“应用导向”而非“公式导向”学习算法的人
编程初学者或自学者
《算法图解(第2版)》是我读过最友好、最用心、也最“人性化”的算法入门书。它通过图像、比喻、轻松语言,以及大量真实例子,把原本令人恐惧的算法,变成了你可以理解、可以实践、甚至可以享受的知识。
如果你一直在找一本“能读完”的算法书,那就是它。👇
《算法图解(第2版)》
[美] 阿迪蒂亚 · Y. 巴尔加瓦 | 著
袁国忠 | 译
全书共分为 13 章,前 3 章内容助你打好算法基础,包括二分查找、大 O 表示法、数组、链表和递归等。余下的篇幅介绍了有广泛应用的算法,以及面对具体问题时的解决技巧,比如何时使用贪婪算法或动态规划,哈希表的应用,图和树算法,K 最近邻算法等。
第 2 版保留原有的轻松风格。400+图示,图解算法复杂理论,让算法概念一目了然,学习不再枯燥!另外,作者紧跟读者需求将书中代码基于 Python 3 全面更新,并新增了两章专门讨论树,加之诸多修订,内容更加完善。