初始的力量被注入数种甚至一种生命形态之中,即使这个星球一直按照引力决定的法则周而复始地运动,但从如此简单的起点出发,却演化出了众多无限美好而神奇的生命形式,并将继续演化下去。这种对生命的视点无比壮丽。
查尔斯·达尔文(1809—1882)
来源 | 《贝叶斯的博弈:数学、思维与人工智能》
作者 |黄黎原(Lê Nguyên Hoang)
译者 | 方弦
1
幸存者偏差
在第二次世界大战中,英国空军雇用了统计学家亚伯拉罕·瓦尔德研究战机装甲的最优化。英国空军注意到,除了前部发动机所在之处以外,从战斗中返回的战机被打得遍体鳞伤。于是空军得出结论,应该减轻前部装甲来强化后部装甲。瓦尔德惊呼:这不对!他的看法是,事情正好相反,飞机只有后部中弹证明了应该加强飞机的前部装甲。
瓦尔德的这个说法相当惊人。但这其实本质上类似于查尔斯·达尔文对生物中复杂结构的出现做出的解释。在这两种情况下,我们当中大部分人所忽略的微妙之处正是淘汰的过程,或者说,我们注意的只是选择中的幸存者。在瓦尔德的情况中,被淘汰的就是那些前部中弹的飞机,这些飞机的发动机被摧毁甚至爆炸,因此无法返航。与之相似的是,达尔文断言那些因缺陷而无法繁衍的动物物种不可避免走向灭亡,因此,在至今仍然存活的物种中,重大缺陷极少。
达尔文的演化理论受到了科学界的一致赞赏,但时至今日,它仍有许多伪科学的批评者。智能设计论证正是这些人用以反驳的工具,这项论证如下。想象一下你在沙漠的正中,如果你偶然发现一块奇形怪状的石头,那么你不会惊奇于它是自然过程的产物。然而,如果你发现了一块结构精巧的钟表,那么认为它可以通过完全自然的过程产生,似乎太愚蠢了。钟表的精巧结构似乎只能用有一位拥有智慧的设计师精心制作来解释。同样,人体那令人惊叹的精巧结构,从骨骼与肌肉的生物力学,到免疫系统的组织,再到灵巧的眼睛以及复杂得难以理解的大脑,都只能是智能设计的结果,而这位拥有智慧的设计者只能是上帝。
这个论证可能看上去很有说服力。然而,除了其中将“拥有智慧的设计者”与上帝混为一谈这一点值得商榷以外,它也低估了我们上文所说的淘汰过程——达尔文将其称为自然选择。
2
加利福尼亚的五彩蜥蜴
我们现在来到美国加利福尼亚州的中央谷地,那里生活着三种不同的雄性蜥蜴,粗略来说,它们是橙色蜥蜴、蓝色蜥蜴和黄色蜥蜴。这些雄性蜥蜴属于同一物种,所以它们会寻求与同一种雌性蜥蜴进行繁殖。但它们在繁殖上拥有截然不同的特性和策略:橙色蜥蜴非常粗暴,它们控制着特定的领地,并且与自己领地中的所有雌性交配;蓝色蜥蜴是忌妒心很重的“一夫一妻制”实行者,它们会控制伴侣的一举一动;最后,黄色蜥蜴是那种偷偷摸摸的花花公子,只要碰到雌性就飞扑上去。
达尔文的演化理论指出,最有能力繁衍的蜥蜴就是能够存续的那些蜥蜴。然而有趣的是,不同雄性蜥蜴的繁殖能力取决于当前其他的雄性蜥蜴种群。
举个例子,假设大部分雄性蜥蜴是粗暴的橙色蜥蜴。这样的话,每只橙色蜥蜴都会占据一个庞大的“后宫”,从而无法很好地监视雌性蜥蜴。这时,偷偷摸摸的黄色蜥蜴很容易就能与那些未被监视的雌性蜥蜴“幽会”,这样的话,雌性蜥蜴因偷偷摸摸的黄色蜥蜴受精的可能性比因粗暴的橙色蜥蜴受精的可能性高。我们预期偷偷摸摸的黄色蜥蜴的数量会逐渐超过粗暴的橙色蜥蜴。
现在想象一下,占主流的是偷偷摸摸的黄色蜥蜴。那么嫉妒的蓝色蜥蜴就可以诱惑雌性并据为己有,这样的话,所有雌性蜥蜴就会逐步与蓝色蜥蜴结合。因此,偷偷摸摸的黄色蜥蜴就无法找到名花无主的雌性蜥蜴,从而无法繁衍。于是嫉妒的蓝色蜥蜴就会导致偷偷摸摸的黄色蜥蜴灭绝。
最后,我们假设绝大部分雄性蜥蜴是嫉妒的蓝色蜥蜴。这样的话,粗暴的橙色蜥蜴就会与这些嫉妒的蓝色蜥蜴争斗,将雌性蜥蜴一个一个地扩充进自己的“后宫”。这些嫉妒的蓝色蜥蜴就都会变成单身,也无法繁衍。它们最后就会消失,而获益的是那些粗暴的橙色蜥蜴。
总结一下,大体来说,橙色会输给黄色,黄色会输给蓝色,而蓝色会输给橙色。这跟“石头、剪刀、布”很相似,石头能打败剪刀,剪刀能打败布,而布能打败石头。这个博弈拥有唯一的纳什均衡,就是随机选择这三个选项。这也在意料之中。人们在现实中观察到这三种雄性蜥蜴在自然环境下共同存在,就像是它们根据“石头、剪刀、布”的纳什均衡进行了选择一样!也就是说,虽然纳什均衡这个概念本来只能由拥有智慧的参与者实施,但它似乎也完全可以应用到达尔文式演化的结果上。我们会看到这并非偶然。
3
洛特卡 - 沃尔泰拉动力学
生物学家约翰·梅纳德·史密斯在 1972 年提出了演化稳定策略这一概念。史密斯将这种策略定义为种群的特定构成,在遭受构成不同的(相对较小的)外来种群入侵时(比如投放 100 只黄色雄性蜥蜴)也能维持稳定。在现实中,这一般对应着种群由于统计涨落产生的随机变化。这种统计涨落是否会对种群产生深远影响?或者说,达尔文式演化是否会将种群的构成重新引向统计涨落出现之前的状态?
为了回答这些问题,我们将会深入、细致地探索达尔文式演化的一个简化模型。“所有模型都是错的”,但我们将要谈到的模型对于众多生物学家来说相当有用。
令 为某个变种的个体在时刻
的数量。在下一代
中,我们知道种群的个体数量需要加上出生的数量并减去死亡的数量。这些出生数量和死亡数量大概与种群个体数量成正比,相应比例就是出生率(记作 %
)和死亡率(记作 %
)。于是种群大小就会变成
也就是说,种群变化幅度与种群大小
成正比。令适应度
为相应比例。我们由此就得到了支配种群大小演化的方程:
。
上面的方程对于特定变种的个体来说是成立的。我们现在用下标 区分不同变种,就能得到洛特卡–沃尔泰拉(Lotka-Volterra)方程
。这些方程更准确,指出了不同变种的适应度是如何随着其他变种种群大小而变化的。正如我们之前看到的那样,当粗暴的橙色蜥蜴在种群中占优时,偷偷摸摸的黄色蜥蜴的适应度就会增加。
然而,我们感兴趣的不是种群中每个变种 的个体数目
,而是每个变种
所占的比例
。在进行一些代数运算之后(留作练习),我们就得到了支配种群中不同变种所占比例变化的方程:
你猜到了吗?支配演化的方程不过是伪装之后的贝叶斯公式!实在难以置信!与主观概率对应的是比例 。从
变为
时,这些概率会依据某种贝叶斯推断过程产生变化,其中的思想实验项由
代替。最后,分母是配分函数,可以保证
的和在
时仍然为 1。
这就是经过分析后令人目瞪口呆的结果。如果将时刻 的适应度看作理论
解释直到时刻
所得到数据的能力,那么达尔文式演化与理性客体毫无二致!
这种比较也许看似荒谬,却有另一引人注目的定理作为佐证(即使它在数学上是显然的)。这个定理由生物学家约翰·梅纳德·史密斯在 1973 年证明,它断言达尔文式演化产生的种群变种比例必然属于纳什均衡。惊人的是,这些纳什均衡对应着拥有智慧的理性客体在博弈中采取的策略。换句话说,正如沙漠中的钟表一样,纳什均衡所刻画的比例分配似乎只能是出于智慧客体的某种意图的结果,至少人们会有这种朴素的信念。但事实并非如此。
看似是智慧的果实,却只是达尔文式演化不可避免的结果。这就是梅纳德·史密斯的这一定理令人瞠目结舌的结论。
4
遗传算法
达尔文式演化远远不止是人类智慧苍白的复制品,实际上它能轻易创造出人类智慧也难以想象的结构——常被引用的经典例子就是人类大脑。虽然演化知道怎么将它设计出来,但即使有了超级计算机,神经科学到现在还无法完全理解人类大脑。
来自达尔文式演化的这种精巧复杂如此摄人心魄,令计算机科学家与应用数学家转向了所谓的遗传算法,用以找出某些问题的答案,而除此以外的解法无人知晓。这些遗传算法除了模仿自然选择,还模仿了杂交与变异。
比如说,假设我们希望确定一个访问法国最大的 100 个城市的方法,使得路程费时最少。这个问题又叫作旅行推销员问题。每个访问城市的顺序都是问题的可能解答,而我们的目标是找出最优的解答。这个问题的难点在于可能的解答有如恒河沙数,一共有 个可能的路线。即使我们将地球上所有超级计算机组合起来,列出所有排列,完成这一任务所需的时间也远远超过了宇宙的年龄。
遗传算法对于这类问题的处理无比高效。这种算法的原则就是维持一个多样化的种群,其中包含有前途但并非最优的解答。在每一步迭代时,算法会选择种群中的两个解答,对其进行杂交操作,在其中添加(有益的)变异,然后进行选择,其中最差的解答会被淘汰。奇怪的是,这种达尔文式的优化方法好得惊人,甚至是许多情况下最优秀的解法!
达尔文式演化在这种情境下比人类的智慧要做得更好。所以,自然的精巧作为反驳演化理论的论点并不令人信服。
01
《贝叶斯的博弈:数学、思维与人工智能》
作者:黄黎原
译者:方弦
法国数学类科普书、大学数学参考及教材类图书畅销书目,在机器学习、人工智能、逻辑学和哲学等众多领域中,探索贝叶斯定理蕴藏的智慧与哲理。
贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。
02
《趣学贝叶斯统计:橡皮鸭、乐高和星球大战中的统计学》
作者:[美] 威尔·库尔特(Will Kurt)
译者:王凌云
本书用十余个趣味十足、脑洞大开的例子,将贝叶斯统计的原理和用途娓娓道来。你将从直觉出发,自然而然地习得数学思维。读完本书,你会发现自己开始从概率角度思考每一个问题,并能坦然面对不确定性,做出更好的决策。
03
作者:[日] 千叶聪
译者:丁丁虫
一本书生命进化的历史,探索自然界的奥秘,开启一段奇妙的知识之旅。
以蜗牛为线索,以小见大,构思清奇,以独特的视角探索生命进化之谜。
小说式的写作手法,让你在阅读中获得全新的体验,原来进化论也能这么有趣。
包含“自然选择派”“进化中立派”,以及遗传漂变、奠基者效应、红皇后假说、中立理论等进化学理论观点,带你领略生命进化的多样性。