从黎曼到康托尔,微积分历经一个世纪才演变为我们今天的大学学科!

611a28b7349dd13aaf3e26d287a1a127.png

在 19 世纪, 数学在根本层面上发生了改变. 在它变得更深刻、更广阔的同时, 对数学洞察能力的要求也越来越高. 而且, 数学催生了一种职业. 大学和技术研究所大量涌现, 需要能够讲授高级课题的职员. 数学教师, 曾经是没有经济保证的职业选择, 此时则成了铁饭碗.

数学的研究越来越聚焦于精确的定义和严格的证明. 欧拉挥洒自如的风格已经让位于柯西的详尽分析. 微积分演变为我们今天所称的分析学科. 贯穿这个世纪的一条分析主线, 是围绕傅里叶级数展开的种种问题. 

本章将探究这方面的一些成果, 以黎曼对积分的定义与相关工作为起点, 以对实数本质的惊人洞察为高潮. 这只不过是一个简短的体验, 让你品味一下微积分在这个变革的世纪中发生了什么.

来源 | 《微积分溯源:伟大思想的历程》

作者 | [美] 戴维·M. 布雷苏(David M. Bressoud)

译者:陈见柯 林开亮 叶卢庆

摘自 | 《分析》一章

1

黎曼积分 

伯恩哈德·黎曼 (Bernhard Riemann, 1826—1866) 曾受教于卡尔·弗里德里希·高斯和古斯塔夫·狄利克雷, 也许是 19 世纪最有才能的数学家, 他完全革新了几何学与分析学, 而且只用一篇文章就奠定了素数定理的证明基础. 这一工作表明, 复平面上的微积分可以用来证明, 不超过 846329017a6cc83e6f06bc81cc52b73a.png 的素数个数渐近等于 8c22847b4837d95aa36a959aa09331d9.png. 1854 年, 为取得在德国大学担任教授的资格 (Habilitation), 黎曼需要提交一篇更高级的论文, 他选择了建立任意一个函数可以展开成傅里叶级数的充要条件.

所成的论文《用三角级数来表示函数》以对这个问题的历史综述开始. 黎曼接下来建立了一个函数可积的充要条件. 关键在于, 对于任意事先指定的上界 6e696d59a3d6c3b8094da1623380cf10.png, 变差大于 950a215692f4af2c21bfad25aa1bad64.png 的地方必须要在一些区间之内, 所有这些区间的长度之和可以任意小.

为了说得更清楚, 我们需要定义函数在一点的变差(振幅). 考虑 64abdf3dcb668528bdeaf680122a1d86.png 在所有包含 a0c8c8d9cb9a308ff8f0c84b11b9a137.png 的开区间上的变差. 44699efed12c3e7d5fa03fea77b8c31b.png 在点 7c3a780fc6476136409ab216c3e220f3.png 的变差 e088147b81fac4bcca649aec658d22dc.png, 定义为 e9d679f76d5eb9a506a9becd54152d0d.png 在所有包含 0feccec724d185fa5dcb8253a3ad2f1a.png 的开区间上的变差的下确界. 特别是, 当且仅当 b72e1983c282a899cb590b6c5eeb3773.png 在点 7f3e2cce9fd5f98295439a633673ee5e.png 连续. 函数 b25c07bfc3e93b2ee7d758ff02813661.png 在 4bf861d878ba416bc35adef1309e38ee.png 可积的一个充要条件是, 对任意的 9decc6ba369f19ae1a9c268a522b4104.png 与 d45d93c13e5bc8242ff1fd893fffeb1a.png, 变差大于等于 94b05d31ae8efb1300343e71cac0e1b6.png 的点集中在总长度小于 079e7ccf2380c59ade5cd08313995876.png 的一些区间内.

这个定理的证明可以通过将定积分定义为

b975b913b427f631b07b29dae4d708a9.png

的极限而变得更简单, 其中 df18043d5b74bfdbb1309e55e78a54c3.png 是区间 44aa550fe7c85386c81ca1c83be584f3.png 中的任意一点. 正如我们在 4.6 节介绍的, 当且仅当我们可以控制各个区间的最大长度, 使得以下和式

e563c5fc2eb497409bc2c246a09ed164.png

与 0 任意接近时, 定积分存在. 连续函数是可积的, 因为我们可以在每个区间上将变差 68d92edab1fbea59c9cedeabe240ea92.png 控制得足够小. 不过, 我们也可以使得上述和式足够小, 只要我们能够将那些变差比较大的子区间的长度总和控制住.

例如, 只在一个点不连续的有界函数是可积的. 尽管包含这个点的区间上的变差不可能小于该点的变差, 但我们可以将区间的长度选取得足够小, 使得它对式 (5.1) 的贡献足够小.

虽然黎曼对定积分的定义很笨拙, 但对他的本意来说是完美的, 即建立函数可积的充要条件.

黎曼立即构造了一个函数, 它在包含它的每一个任意小的区间内都是不连续的, 但它仍然是可积的. 他的函数是

723f3455436f02ee3dc363d6ab0c03c1.png

其中 10436177c17c8e9a63e2db64f685322f.png 是 d064f19a1aaf26fc42d57feb0e45f558.png 减去离 274859e391b9acfe1e76e60a952e0ed7.png 最近的整数, 在例外的情况中, 即当 b41dd0eea224e295c6284ad1b33740fc.png 为半整数时, 离它最近的整数有两个, 此时定义 f19b1b55d0c3f213dfb15ddf5a6abacf.png 等于 0. 例如, 7aecc18afcb6cb3f62b519e2e10f3485.png. 虽然这个函数在每个区间上都有一个不连续点, 但对每个 07f499ff4fa009421b6825467c5452c0.png, 只存在有限多个点, 其变差超过 ddff62c3966b5c7ac40f74e0c58a8392.png. 这个函数的图像在图 5.1 中给出.

黎曼对定积分的最后一个贡献, 是引入了瑕积分的概念. 他指出, 有可能通过取极限的方式来定义一个无界函数的积分. 作为例子, e8a6ab9ab3054aebc6c3e34fa5c9b76f.png 等于 2, 这是因为

f05331e88477d643147992f2a5851c04.png

虽然 b703537540acfeba8e4b411018276be6.png 在 dffa1c5cb5135073947992cd3ff5c3f6.png 上不可积, 但它的瑕积分存在.

3809c6f1fce10930fa5f6dea0169afb4.jpeg

图 5.1 黎曼的在每个区间上都有不连续点的可积函数: 729f2dbea7f599cf207d69f4c7d3463b.png

2

微积分基本定理的反例 

只要我们只考虑连续函数, 微积分基本定理就成立. 但如果我们考虑的是具有无限多个不连续点的函数, 就不能再假定作为黎曼和极限的积分与作为原函数的积分是等价的. 这样一个例子来自式 (5.2) 所给出的黎曼函数.

有些函数本身是导函数, 但不一定是连续的. 一个标准的例子是不连续导数 (discontinuous derivative), 我将称之为 b894efbb76a4a89da5989d229048ed01.png 函数, 定义如下 (图 5.2):

2e716b0e40f68d4472ff03db349cec30.png

f08d7796052127c725b13624f67f035d.jpeg

图 5.2 当 8f62a4fa339f22b7d45bf73e44acfd41.png 时, 1c9948a76b842e8188e5b8eb9eaa9d7b.png; 当 2e76886efae52040ad2f584b195ef538.png 时, 349e76eb24bca2f366dcd44bfef88bcc.png

当 4417ac381bf91bb762d7e0f4f2eb1cb0.png 时, 3872514f2c1bf31c1cfe6c9a732f3c0a.png 的导数是 432ea4a174f3eac934f13922890015e4.png. 当 2a4a775e11de486af83b069130e927e8.png 时, 需要用到导数的极限定义来计算:

26384fa85b07d89b8d28c9846c8cc2fb.png

9ad6a4f7df9c8fae5e87d3c65443b0df.png 在 677d8b6e3db2dd6427edcd6252dbb63e.png 处不连续, 因为

6a58ab7667dec99e2a822a3dc2a7ef52.png

不存在.

正如加斯东·达布 (Gaston Darboux, 1842—1917) 在 19 世纪 70 年代所证明的, 每个导函数一定具有介值性质.也就是说, 若 d0a6c892d79f42657e1a3b71f963351a.png 是某个函数的导函数, 则对任意的 f31bfdd98496d32855da7802592f73ca.png, 以及介于 5440b2cc1ab7edefae26f41a6341419f.png 和 8abfb670aebcc1c548d01d2f599b6508.png 之间的任意的 7090c6051acee8355085bdbf7040b7f9.png, 一定存在某个 4cda57c9e57e604163cdbcdb4926a4d3.png, 使得 4c654fdea7f3082df98ef9ad2e59c56d.png. 式 (5.3) 所定义的函数 e23c7fdaa45cceba2557004bc0ca65f8.png 具有一个在 1b5b4bacbc1a2832b3e78b22add07355.png 处不连续的导函数, 不过 9191803d55dd1e010d97794dc9764dc2.png 仍然具有介值性质: 每个包含 68e5b7fc7290f49010e80dfc950cb686.png 的开区间也包含使得 bb156a724b9bc86213c2847392ba79eb.png 取值为 8f8ea11c167e46832f76bc196c008758.png 的点, 以及取值为 9778feaf5f1fd6133fb443b63dd6c6ee.png 之间任意一个值的点 (图 5.3).

c7ed77447f0e406878fb092863dc1cff.jpeg

图 5.3 当 9350a61a2a978c780eee02e6ee8be461.png 时, b3ecb7615ef9a0f08c532fdbd1432581.png; 当 ae3e2fb174777df677095670a2d5bb09.png 时, 985fc05d1a9245e79a08f2e5207615f8.png

从达布的结果可以推出, 式 (5.2) 所给出的黎曼可积函数不可能是一个导函数. 如果我们定义

6a6ac7830fbdafbfd768978e8e5774b4.png

则 5d9a9776d2cbd437fe275639e31ca04a.png 在 dfb9b74db856825b1b664ae66aac6e78.png 的任意不连续点都不可导. df8c19be3f574c6977d16d90aa5cf6d9.png 内的每个开区间都包含无穷多个 994b6c149565b81b63fd92db330f2ec7.png 的值, 使得 85185af8b711f882c7f98556b52c1066.png 在 cfc2779f8535c56952578c9c6bdd04a5.png 处不可导, 正是因为被定义为积分的函数并不一定就可导.

在另一个方向又如何呢?如果已知函数 bec0edaa624683a64f09df0c74a87313.png 是另一个函数 70314a3218421eb142771d62c1367bca.png 的导数, 是否总可以对 8c7033f08d1167510d002cd50bbe2ee9.png 积分?严格说来, 不存在可以作为黎曼和极限的无界函数. 由此可以推出, 8c9848565f560c0c6896622523569ff0.png 的导数在任何包含 8a0f13695ae5abc19747c2b02cb3e5e0.png 的区间上不可积. 不过这还不够令人信服, 因为瑕积分的确存在. 这个问题的一个更强的版本如下: 如果已知函数 8785ff6983552b990cb27da41962e609.png 在区间 112defdd39630e1d7cc4f38c4bd8ab1e.png 上每一点可导, 而且其导数 6aba726dad56e15ed490ff717f711b36.png 在该区间上有界, 是否可以推出 0caf19acd08433ed12a229c5d3f03927.png 在该区间上可积?换言之, 若在区间 7fd340e82ac54ae101bfa4a2e50839b4.png 上 1a3977117bb6380d55b27accd00300fb.png 存在且有界, 是否总有

be83fed809a1ceb81bcad2e36dbece07.png

令人惊讶的是, 回答是“否”. 原因是定积分有可能不存在. 这个结果是由意大利数学家维托·沃尔泰拉 (Vito Volterra, 1860—1940) 在 20 岁时给出的, 在一年以后, 即 1881 年发表. 这种函数的一个反例的介绍与解释可见 [10], pp. 89-94.

虽然有这些令人不安的发现, 关于黎曼积分的真正问题倒不在于微分与积分并非总是互逆的过程, 而是在于结果表明, 黎曼积分 —— 其定义用于澄清一个不连续函数何时可积 —— 不太适合用来证明关于积分的其他结果. 特别是 19 世纪晚期的一个重要问题: 刻画那些可以逐项积分的级数. 这对傅里叶级数以及其他源于求解偏微分方程的级数来说尤为重要.

一个不可逐项积分的级数的例子如下:

38951afeb5b9105bc0be7b2b2aa01ea6.png

其部分和是 (图 5.4)

3496262bb5d7eaa014f3a8bbe9fb6469.png

0a9037ac1587631c5d6f4066bdbb914b.jpeg

图 5.4 cda2a1b1df029aa2574c5c066dbf852a.png 的图像, 007d1049af55e82e58164cb70c8ded57.png (实线), 6e4637fb3d5571c448483f072405cea3.png (长虚线), 29172d4fae2fa3b18bc312cbddcf0a00.png (短虚线)

随着 f65dcbcd3931e27c5c4cc763f1d73435.png 的增大, 8654249e0b8a62ab0f6281197546fa48.png 的驼峰越来越向右隆起. 对 b8269b3094e137d8ea52c13d3239b6ea.png 中的每个 c5c7629489640e102178a72d1ef25661.png 随着 f66ef24664b53bacff314491859e2ec1.png 的增大而趋近于 0. 因此,

81f6f8ecf45164208c229b9a73975b3c.png

这个级数的积分等于 0,

76da7e17dfb421ed0f2dad4aa1e69554.png

而 5043752fa765cdb65436025d240ee574.png 下方区域的面积是 df9adf29d60c8690757f7b6f9cbbc6b5.png, 当 059a323effdf0ea58fa9a9384babe232.png 趋于无穷时, 它趋于 1:

198add5f0e65479faaf63e10f60cbb1a.png

在这个例子中, 无穷和的积分并不等于积分的无穷和.

亨利·勒贝格 (Henri Lebesgue, 1875—1941) 在其 1901 年的博士论文中, 提出了一个不同的积分, 这可以消除与黎曼积分相关联的许多困难. 他没有分割函数的定义域, 而是选择划分值域.

在图 5.5 中, 值域被划分为高度等于 1 的各个区间. aefface1bee3918c0240cbb06565725b.png 所标记的区间, 是那些取值在 1 和 2 之间的点. 我们用 540bfa0934be2b541ec523f669c3a630.png, 即 5810b0cd5b6e33dc163556fc55f54bbe.png 的测度, 来表示所有这些区间的长度之和. 更一般的是, aa4c913230746d3f496c60efafedebb0.png 是那些函数值介于 e89a179b2cf795e10fe7908f6ceba051.png 和 88edacb1141a75606d1f0c971134c1fb.png 之间的区间长度之和. (我们将在 5.4 节看到任意一个集合的测度的定义.) 对于 9a6941c8062d5ad0d79c35386a50c1c4.png 在 9c5883c11498712e28d28894f45cfb16.png 上的积分, 我们让每个测度 2ea601a25f020d34771623a62f196f45.png 乘以对应函数值下界 2f3330b76664a5faeb148eb7e1e379ab.png 而得到一个下界, 让每个测度 c715c724fb5388a6e3c85bddddad6bf0.png 乘以对应函数值上界 58f94439ab8eb6e9dac4316027997e24.png 而得到一个上界:

3b2cb032f22b62486bb300930a26423c.png

c21ad936b6c57f6bbeeda6ab8f89d3d7.jpeg

图 5.5 勒贝格的水平划分

如果我们选取一个更精细的划分, 比如 01fc22eb68664b86337eab9622ccb184.png, 且 3a8e6c7b4b190b298d1cd5733b5f5e6c.png, 其中 022fae5a3925176c9423e3557e25c069.png 取遍所有的整数, 并令 d2dd4227ff6754be092d90b56668715d.png 是满足 2b2cdc413d3a7a224afce8e861233226.png 的 e9de73ee79ec68a3dcf66a91bac7285d.png 构成的集合, 则定积分有上、下界如下:

5dc72668d96f5d4798e82c018478c6b4.png

当且仅当可以选取充分小的 35730defb231775f99fe17b08477ed00.png, 使得上式两端的上和与下和任意接近时, 函数 42cb55d5ca1b1988af8cfa77f92549bf.png 的勒贝格积分存在. 上和与下和的差正好是

141db57cd80ba5c46d82321f5613ff2f.png

因为 62e729be715d3d75cff66a1db4f53762.png 是有限的, 所以如果 61ba241f87a1cb6bcfdd81a79c39728f.png 在区间上的上界与下界都是有限的, 那么可以选取充分小的 3860001f6d2fc509feab69586b811680.png, 使得这个差任意小. 在这种情况下, 勒贝格积分的上界与下界趋向于同一个极限.

值得指出的是, 勒贝格的方法可以处理在一个方向无界 (即无上界或无下界) 的函数, 而无须借助于瑕积分. 如果积分的下极限趋于 f9c5db2c220cb0e7b6b7ab73c6ef0c35.png, 那么定积分的值就定义为 a3e415af228825c08dfdc8f7041b5263.png. 如果积分的下极限趋于某有限值, 则上极限必定趋于同一个值, 从而定积分具有一个有限值. 此外, 如果我们允许 a0684affd1e78e9e51d297717bbc232b.png 是无穷多个区间的并集, 则沃尔泰拉的函数不再构成微积分基本定理的反例. 利用勒贝格积分, 它的导数仍然是可积的. 不过最重要的在于, 勒贝格大大简化了决定一个级数何时可以逐项积分的问题. 今天, 大多数数学家在使用勒贝格积分, 不论是以隐含的方式, 还是以明确的方式.

为使用勒贝格积分, 我们需要对任意的有界实数集 14906eb92d9a23b9283b0e50c7a4100e.png 定义其测度 867504a7fc7acfefcc5df92d9c3a6c60.png, 而这意味着我们需要理解实数的子集的可能结构, 结果表明, 这个挑战远远超出了 19 世纪上半叶数学家可以想见的难度. 对此, 我们将在本章最后一节 (5.4 节) 探究.

不过, 即便是勒贝格积分也并不是完美无缺的. 如果我们考虑函数

681cfbb391b830a5da09ee391b05c7fc.png

它具有定义良好的导数,

ae023cd2c2594694a2286ff73635b98c.png

但在任何一个包含 0 的区间上, 这个导数既没有上界也没有下界, 它的勒贝格积分不存在, 尽管其瑕黎曼积分确实存在. 在 1912 年与 20 世纪 60 年代之间, 好几位数学家创造了克服这个问题的等价的积分定义, 通常被称为亨斯托克 (Henstock) 积分.

这里所传递出的信息在于, 积分的整个课题远比我们在一元微积分里学到的复杂. 然而, 学生必须要懂得函数既可以作为微分的逆运算, 也可以作为求和的极限过程. 微积分基本定理正好联系了积分的这两个观点, 而且微积分的诸多威力恰好依赖于这一联系.

3

魏尔施特拉斯和椭圆函数

在谈论 19 世纪的分析学发展时, 必定要提到卡尔·特奥多尔·威廉·魏尔施特拉斯 (Karl Theodor Wilhelm Weierstrass, 1815—1897, 图 5.6), 他被贝尔 (Bell) 誉为“分析学之父”. 我们 (在 3.3 节) 早就碰到过他了, 他确立了欧拉关于正弦函数的无穷乘积的合理性. 自 1856 年起, 魏尔施特拉斯开始担任柏林大学的数学教授, 他在那里教授周期为两年的分析学, 培养了 19 世纪晚期的许多数学家, 包括索菲娅·柯瓦列夫斯卡娅 (Sofia Kovalevskaya, 1850—1891), 首位在欧洲的大学拥有数学教授席位的女数学家. 对一致连续性与一致收敛性的现代理解, 主要功归于魏尔施特拉斯. 他证明了, 如果一个级数一致收敛, 那么它就可以逐项积分,

e3fb81d96d9be76060d8ac6d21c63494.png

魏尔施特拉斯经常在课堂上慷慨地分享其数学创见, 并允许学生细化并发表.

c1f2093c8130a762c2dd875c00846e44.jpeg

图 5.6 卡尔·特奥多尔·威廉·魏尔施特拉斯

第一个无处可微的连续函数的例子就是这种情形. 1872 年, 魏尔施特拉斯在课堂上给出了这个例子. 三年后, 他的学生保罗·杜波依斯-雷蒙德将它发表了. 关于魏尔施特拉斯的诸多贡献的一个极好的介绍可见于威廉·邓纳姆 (William Dunham) 的《微积分的历程》(The Calculus Gallery).

魏尔施特拉斯的成功之路并非一帆风顺. 他父亲对他的期望是在普鲁士政府谋得一个管理职位. 为此, 他把魏尔施特拉斯送到大学学习法律、金融和经济. 因为父亲不允许他追求数学, 魏尔施特拉斯非常沮丧, 他忽略了所有课程, 连期末考试也懒得搭理. 大学肄业一年后, 他进入明斯特大学, 预备成为一名高中数学老师. 1841 年, 刚好快到他 26 岁生日时, 他终于毕业了, 并得到了第一份教职.

幸运的是, 魏尔施特拉斯在明斯特大学的老师有克里斯托夫·古德曼 (Christoph Gudermann, 1798—1852), 他是当时少有的椭圆函数与阿贝尔函数方面的专家之一. 魏尔施特拉斯的最大贡献就在于对这类函数的研究, 遗憾的是, 只有极少数数学本科专业课程会介绍这类函数. 在业余时间, 他探究这类函数的奥秘, 偶尔发表几篇文章, 但很少受到关注. 直到 1854 年, 他发表了《关于阿贝尔函数的理论》( “Zur Theorie der Abelschen Functionen” ), 这项工作是如此重要, 以至于哥尼斯堡大学授予他荣誉博士学位, 柏林大学则聘请他为数学教授.

为讨论魏尔施特拉斯所取得的成就, 我们需要复平面的微积分知识, 因此这超出了我们在这些篇幅里可以解释的范围. 然而, 由于椭圆函数非常重要, 在当今最激动人心的数学 (从费马大定理的证明一直到现代物理中的弦论) 中占有中心位置, 因此值得指出它们是如何定义的, 以及为什么如此重要. 椭圆函数的名字源于一个曾经困扰牛顿的问题: 求出椭圆的一段弧长. 正如在 2.6 节所提到的, 人们在 1659 年就已经知道了弧长公式

6d015f2a3ad4ba397b5e8a8ad73ecc75.png

一旦知道行星的运动轨道是椭圆, 自然就引出了求椭圆弧长的问题. 如果我们考虑中心在原点的上半椭圆 fc0deb56955be934c542128a0caea3ae.png(其中 0a79b9f0ad6c6b75cb2fa1aec18c3d09.png), 或

d67f88186fe89edf3260d3278349f44d.png

其导数是

c69cc29e721258b584f972ade0dc7c25.png

从 0 到 2060b577431abe2a0fcff1ae156d7738.png 的弧长为

33149817306654c0d39620706ac1d109.png

其中, b723fc99fc16b997e564029a1305bb7f.png.

问题源于被积函数分母中的四次多项式的平方根. 在同一时期, 人们还发现了其他类似的积分, 其中最著名的一个是, 确定单摆何时沿着其摆弧到达某给定点的积分.这些积分 (分子是一个多项式, 分母是一个三次或四次多项式的平方根) 后来被称为椭圆积分. 分母是一个五次以上多项式的平方根的积分被称为阿贝尔积分, 源于阿贝尔对它们的研究.

1797 年, 高斯发表了对这些积分的第一个真正见解, 聚焦于最简单的情形 (这个函数的图像见图 5.7):

6fabb1035900bd3993c8ec0ef37cf4a7.png

高斯注意到, 可积分的类似函数 (其分母是一个二次多项式的平方根的函数) 是更常见的函数的反函数,

41cd5cb8b292312affbc80040938d807.png

其中, 37a4bad1055b5309d555e16ad384658f.png 是双曲正弦函数, 而 ec5a04f6411afd19afaea7789148abf0.png 是它的反函数. 第一个见解是, 与其考虑由椭圆积分定义的函数, 不如关注其反函数.椭圆函数 81f18912e8f290117647c458128d3f8f.png 就定义为 2e0a0b38a570a2bf84b0cca7cea9e87c.png 的反函数.

第二个见解源于这样的认识: 椭圆函数只有定义在复平面 ee933f1f394ce274e741915d0ce34fb1.png 上才能展现其真正本性. 虽然正弦函数与双曲正弦函数作为实数轴上的函数看起来非常不同, 但如果在复平面上考察它们, 差异就消失了. 多亏了欧拉公式, 即 3.3 节的式 (3.9), 我们有

4f704bcd01445cde676cdfa43fba8522.png

作为复平面到自身的一个映射, 双曲正弦函数只不过是将正弦的自变量与因变量都旋转了 711d48b7d41d28701d731bf1f5bd7b6b.png. 特别是, 在复平面上, 它们都是周期函数. 正弦函数有实周期: 9af8d2e8ded988addf271974a975b814.png. 双曲正弦有纯虚周期: 8bcb0219ff60295546172816a27534c1.png

3dd3c4ab497f63d133f91ad62456cbf8.jpeg

图 5.7 b7e8254b758a2f0dac18a614c3c14584.png 在 898eb2d90e79ba4e92163d96956d4e3a.png 上的图像

椭圆函数具有两个周期. 复平面上的两个线性无关的向量可定义一个平行四边形, 它可以用来产生一个格 (图 5.8). 正如正弦函数在整个实数轴上的值由它在 9c04bb4799d72b4b95be0ef5ec318ab2.png 上的值唯一确定, 一个椭圆函数在整个复平面上的值也由它在这个平行四边形上的值唯一确定. 事实上, 正弦函数与双曲正弦函数只不过是椭圆函数的极端情况, 两个周期之一被拉伸为无穷大.

75e7f842fe3ddc1c838311cdd27616f0.jpeg

图 5.8 一个具有周期 1 和 c028635b7a3a80c991e98b04c3b90e76.png 的椭圆函数的周期格

椭圆函数的优美与威力源于它们之间的错综复杂的恒等式与关系. 三角函数等式只不过是椭圆函数世界的纷繁景象的苍白投影. 对椭圆函数的直觉, 没有一个人能胜过印度数学家斯里尼瓦瑟·拉马努金 (Srinivasa Ramanujan, 1887—1920), 他甚至经历了两次大学辍学. 作为马德拉斯 (Madras) 的一个职员, 他有机会到马德拉斯大学的数学图书馆学习, 他在那里学到了椭圆函数, 并开始自己探索这片沃土. 他的发现在其短暂的一生中得到了认可, 他成为英国皇家学会最年轻的会员之一, 而且是印度第二个享有此荣誉的人. 由于人们后来发现, 源于椭圆函数的对称遍及大自然, 因此拉马努金的结果对现代物理来说变得非常根本.14今天称为金奈 (Chennai).

4

实数的子集

格奥尔格·康托尔以他在集合论和实数系结构方面的工作著称, 不过他是从一个关于傅里叶级数的问题开始做研究的. 康托尔曾在柏林大学跟随库默尔 (Kummer) 和魏尔施特拉斯研习数论. 在获得担任大学教授职位的资格后, 他的第一份工作是在哈雷-维滕贝格大学任教, 在那里, 爱德华·海涅劝服他研究傅里叶级数中存在的问题. 康托尔很快全力解决了具有无穷多个不连续点的函数的傅里叶级数展开. 这使他认识到, 实数的所有无限子集并非都可以比较大小.

事实上, 正如数学界慢慢认识到的, 对实数的有界无限子集的大小, 存在三种不同的描述方式: 稠密性、基数和测度.

稠密性是其中最古老的, 而且在 19 世纪中叶前就已经得到了很好的理解. 如果每一个与 40eb5984fed698a8ffff07a78eba2545.png 相交的开区间都包含 6109af6b11ee3161abaf33e313f14680.png 的子集 6ee6d55d9672d3605a90b13f71bba126.png 中的至少一个点, 则称 fef6f5a6edb14e6a0660b3bd9fe3f70a.png 在 22d9cbfa92d733f5eb3a664948f4c9bb.png 中稠密. 事实上, 你一旦知道每个开区间都包含 0de7814e2db78f96715c8034ccd5f17e.png 中至少一点, 就不难知道, 每个开区间包含 9ca7481da3d11fd9a13b39e5800c456a.png 中无限多个点.1e77354a3f4f762874d01faf436c41eb.png 上的一个稠密子集的经典例子是该区间上的全部有理数. 许多更小的子集, 比如分母为 2 的幂的有理数, 也是稠密的.

另一个极端, 是所谓的无处稠密的子集. 如果 df995e4ef415e6de9d5e34af04d6ccba.png 的每个开子区间都包含着一个子区间, 它跟 9a410b3467665314c38a02e25bab51ab.png 不相交, 则集合 6abc64b453ea34f8e4421ace331c8f1f.png 在 d608e9b44f34e73b5219ae3c224d0cfe.png 中无处稠密. 任何有限子集都是无处稠密的, 集合 4bbb2319b2482a388ee53c0985e3818b.png 在 edd20980813532bacf6116ee3b2cf2a3.png 中也是无处稠密的. 4e8ec925097202d73638b0d6abc2818c.png 的每个开子区间 03c26869fdd6a5b8f6bd3ae689b56173.png 都包含一点 52f151d7bb851d1622de2b24ec34232a.png, 它不是某整数的倒数, 因此它介于 22af6c78dc66fc9a254710de250a29f2.png 与 dabe10c892817b3d85c7d4561f75ff28.png 之间 (ae4218e2fa98099e43a8c1e59f3fa05b.png 为正整数). 6dad5b98db85facc0e3e44c4c06633a9.png 与 fccd4d5eade07ef0b74b6f05024195c9.png 的交就是 c002dbac2facc1edfe7519a10a241baa.png 的一个子区间, 它不包含任何形如 fa80cc9035046e20546fb693e99315dc.png 的数.

正是康托尔在 1873 年发现 (并于次年发表) 了无限集合的基数的重要性.两个集合具有相同的基数, 当且仅当它们之间存在一一对应的关系. 在这个意义下, 5622ddb1c4ae188848e6f65e9bd59e8c.png 区间上的有理数集不超过正整数集. 从 a1c35415d8163d276e4771569320c070.png 和 fc25ec2946d8370d43dcdf4ca074ea5c.png 出发, 我们可以将有理数线性排序: 取有理数的简约形式, 如果 45359697c02ebb34d84614d8303dccbe.png 或 outside_default.png, 而 outside_default.png, 则 outside_default.png 排在 outside_default.png 之前. outside_default.png 中的全部有理数可以与正整数形成一一对应的关系, 如下所示.

outside_default.png

有限集或可以与正整数集形成一一对应关系的集合都称为可数的. 有理数集是可数的. 这也许不足为怪. 那么究竟是否只有一种无限呢?康托尔 1874 年的论文表明, 存在更大的无限. 特别是, outside_default.png 区间上的全部实数无法与正整数集构成一一对应的关系. 这个事实的标准证明有赖于实数的无限小数表示是众所周知的.邓纳姆对康托尔的原始证明给出了优美的论述, 这个证明直接建立在实数的完备性基础上.如果一个集合不是可数的, 就称为不可数. outside_default.png 区间上的实数集不可数.

我们在 5.2 节遇到了描述一个集合大小的第三种方式, 称为测度. 勒贝格用三条准则来定义它:

(1) 区间的测度是其长度, 单点集的测度是 0, 对于有限多个或可数无穷多个有测度定义的集合的无交并, 其测度是各个子集合的测度之和;

(2) 对一个集合做平移 (即每个元素加上同一个数) 不会改变其测度;

(3) 若 outside_default.png 和 outside_default.png 都有定义良好的测度, 则 outside_default.png 与 outside_default.png(在集合 outside_default.png 中而不在集合 outside_default.png 中的元素构成的集合) 都有定义良好的测度, 而且后者的测度等于 outside_default.png 的测度减去 outside_default.png 的测度.

正如勒贝格所能证明的, 这些条件唯一确定了度量实数子集大小的方式. 为求出一个集合 outside_default.png 的测度, 我们定义 outside_default.png 的一个覆盖 outside_default.png 为开区间的任意一个包含了 outside_default.png 的可数并, 而该覆盖的长度则定义为这些开区间的长度之和.若 outside_default.png 的测度存在, 则它必定等于 outside_default.png 的所有覆盖之长度的下确界. 如果我们考虑 outside_default.png 的子集, 则这个区间上的有理数集 (它是可数多个测度等于 0 的集合的无交并) 的测度等于 0, 而这个区间上的无理数集具有测度 1. 任意可数集必的测度必然为 0. 那么 outside_default.png 上的不可数集又如何呢?

正如康托尔所表明的, 一个不可数集的测度也可能为 0. 如果我们从区间 outside_default.png 出发, 去掉开区间 outside_default.png, 就得到了一个测度为 outside_default.png 的集合. 如果我们继续去掉剩下两个区间中间的三分之一, 即 outside_default.png 和 outside_default.png, 就能得到一个测度为 outside_default.png 的集合. 如法炮制, 我们在每一步去掉上一步剩下的各个区间中间的三分之一. 在第 outside_default.png 步以后, 我们得到 outside_default.png 个区间, 其总测度是 outside_default.png (图 5.9). 集合 outside_default.png 有时称为康托尔尘 (Cantor dust), 它由 outside_default.png 中剩下的点构成. 被去掉的集合是一些区间的可数并, 从而康托尔尘是可测的, 而且其测度是

outside_default.png

集合 0476d67deeaf565c6ee3c4686bcee755.png 显然包含了所有区间的端点, 即分母为 3 的幂的有理数. 也许会让你惊讶的是, 609fa3e6a20663598622ad9aba5bc5cd.png 中还包含不可数个其他点.

0abf38fc6261006a84226fa4ed017825.jpeg

图 5.9 通过去掉中间的三分之一来构造康托尔集

对此, 最简单的方式是采用 3 为底数, 或者 0 和 1 之间的实数的三进制表示. 例如

3220ac862583e1b1a1c129cf0090c456.png

这些区间的端点是有穷的三进制小数. 0 和 1 之间的每个实数都可以在十进制下表示为一个无穷小数, 而且这个表示是唯一的, 除了那些有限小数也可以表示为以无穷多个 9 结尾的无穷小数以外, 例如

a74f01a8990e2dc97a65ff125c89f3a9.png

以类似的方式, 0 和 1 之间的每个实数都可以在三进制下表示为一个无穷小数 (其中只用到数字 a8cefe09c42d757955b01f30c171f594.png), 而且这个表示是唯一的, 除了那些有限小数也可以表示为以无穷多个 2 结尾的无穷小数以外, 例如

c904277700fc18b8639cacc7f0177d3e.png

康托尔尘由单位区间去掉了区间 57646c508784d8def9a1422ebf9ea605.png, 然后是 9e1a5e4039a805faf484af364d28641e.png 和 c3804bc5e2cb616762917888ca7f80a8.png, 再接下来是 c5892ce4295d5d454b568164e1bb6608.png, 以及 7e7649ae0e59da32b990dcd41faee5cd.png 等之后剩下的点构成. 换言之, 我们去掉了所有其唯一三进制表示中在某个 1 之后有非零数字的数. 一个三进制表示中只含有 0 和 2 的实数一定包含在康托尔尘中. 特别是, 康托尔尘中的一个元素是

b6a48a5049a5ea7426c342da119738dd.png

这样的数有多少呢?显然在 d291e2245acfa389691c420ec257f12d.png 与形如

68d75e2fee2c20663662ae2d1f55c0fa.png

的二进制表示的数之间有一一对应的关系.

然而, 单位区间上的每一个实数都有这样一个二进制表示, 因此 55cb493ed55527eff626825a932f97ed.png 的基数与单位区间 7ba003e0f85204aa7dc600ff5d753702.png 的基数一样大.

集合 2b061b16439ef6235a9007d5b30cdee8.png 是违背直觉的. 它是无处稠密的: 每一个与 a09bbb93a7dccfb412a33cd183ff3002.png 相交的开区间必定与我们去掉的某个开区间有交集. 它是不可数的. 而且它具有测度 0.

一个无处稠密的集合可以具有正的测度吗?回答是肯定的. 如果我们不是去掉中间的三分之一区间, 而是去掉中间的五分之一区间, 那么每个开区间将仍然与其中之一有交集, 但剩下的集合的测度是

2941bd5e0ffe75dd451386473f55e09c.png

通过选取更小的分数, 我们可以使得剩下来的无处稠密集的测度与 1 任意接近.

那么一个稠密子集是否可以有测度 0 呢?如果它是可数的, 比如说是有理数集, 那么回答显然是肯定的. 不过即便这个集合不可数, 回答也可以是肯定的. 从康托尔集 612c240585122c21b6251208f1cb3e77.png 出发, 将 3d7c5a5002443e56c0f2831b6432e57f.png 的一个副本 (按比例缩小) 放到区间 dccc87b1a52045336ae32a9518fe6b99.png 中. 然后将 62b37cf2bda56ef3b34113fee54fa4ea.png 的另一个副本 (按比例缩小) 放到那 3 个被去掉的长度为 eab1fb99adcaab316f0c68633b240152.png 的区间中. 将 dcc177756f8b97c2529451b6ce184370.png 的另一个副本 (按比例缩小) 放到那 9 个被去掉的长度为 026a2efeaacb5872bd99e587a670cc15.png 的区间中. 如此下去, 直至无穷. 由于每一个集合的测度为 0, 故所有这些集合的并集测度为 0, 不过它在 ec9cd3310f486930c21736f8049a0118.png 中稠密.

综上所述, 描述 a92264c438f85c28410f9882fd8473b2.png 的一个无限子集的大小有三种方式:

35a3d329d4a5a93aaeb7aa01743ba28e.jpeg

一共会产生 8 种可能的组合, 其中只有两种不会出现, 即“可数”与“正测度”相连的两种组合.

种特殊情况, 因此这五个子集不能全都是可测的. 除此以外, 通过推广他们的论证, 可以证明任意立体形状可以划分为有限多个子块, 并用刚体运动重组为其他立体形状. 这个结果的一个宜人的证明可见瓦普纳 (Wapner) 的 [70], 书名《豌豆和太阳》(The Pea and the Sun) 的含义在于, 如果我们接受选择公理, 那么理论上有可能将一粒豌豆 (pea) 分割成有限多块, 然后利用刚体运动将它们重组为太阳 (sun) 大小的球体.

就像连续统假设一样, 我们可以选择接受或拒绝选择公理, 而不影响我们对实数所知的其他一切, 包括我们是否选择接受连续统假设. 实数集真的是超出了你的想象.

  推荐阅读

28db7deaba09b252372a621e5470411e.png

《微积分的历程:从牛顿到勒贝格》

作者:邓纳姆

译者:李伯民 汪军 张怀勇

本书荣获“第七届文津图书奖推荐书目”。

这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。书中的每一个结果,从牛顿的正弦函数的推导,到伽玛函数的表示,再到贝尔的分类定理,无一不处于各个时代的研究前沿,至今还闪烁着耀眼夺目的光芒。

e2cf4b989435d64704b271abbac11797.jpeg

《可视化微分几何和形式:一部五幕数学正剧》 

作者:[美]特里斯坦·尼达姆(Tristan Needham)

译者:刘伟安

1.旧金山大学数学系教授,理学院副院长,牛津大学博士,与霍金齐名的诺奖得主罗杰·彭罗斯弟子特里斯坦·尼达姆经典巨作!

2.200多幅手绘示意图,将“微分几何”回归为“几何”,运用牛顿的几何方法对经典结果做出了几何解释。

3.原著豆瓣高达9.9分!被认为是“小说一般流畅的数学教材!”

4.译者为国内著名偏微分方程专家,武汉大学原校长齐民友老师弟子、武汉大学数学教授刘伟安老师。

03f7a05ffcba56536a57a5985175281c.jpeg

《微积分溯源:伟大思想的历程》

作者:戴维·M. 布雷苏

译者:陈见柯 林开亮 叶卢庆

从古希腊、古埃及、古印度、中国和欧洲等地的微积分思想,到牛顿、莱布尼茨、伯努利兄弟、黎曼等伟大数学家的辉煌成就,看一看微积分这座“数学宝藏”是如何被塑造成今天的模样的。

6df24d2df7bb55af21c3e84fc6170d7c.png

《普林斯顿微积分读本(修订版)》

《普林斯顿数学分析读本》

《普林斯顿概率论读本》

作者:[美] 史蒂文·J. 米勒、拉菲·格林贝格、史蒂文·J. 米勒

译者:李馨

风靡美国普林斯顿大学的数学课程读本,教你怎样在数学考试中获得高分,用大量例子和代码全面探讨数学问题提供课程视频和讲义。被誉为“普林斯顿读本”三剑客。

79c7c8170a1d65636f4db399ef3b8b31.png

《简单微积分:学校未教过的超简易》

作者:神永正博

译者:李慧慧

仅用“阅读”就能理解微积分原理,无须背诵公式、烦琐计算,传授日本微积分入门的“巧妙思路”。

书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值