贝叶斯大脑:我们为什么会轻易相信非理性的观点?

7e52c6b4eecb21e28188d6d4f84dcff6.png

8c52d3bae4d1205cfc774b61d916dd63.jpeg

我曾问过这样一个问题:人类为什么在没有确凿证据的情况下,会如此轻信那些明显的胡说八道呢?为什么在有明确证据的情况下,会如此轻易接受那些非理性的信念呢?我们每个人对于哪些信念是非理性的、哪些信念不是非理性的,都会理所当然地有自己的看法,但我们也都可以对其他人提出这些问题。

部分答案可能在于我们的大脑在数百万年里的进化过程,我们需要快速对可能危及生命的不确定性做出决策。这些进化上的解释只是猜测——它们很难被检验,因为大脑不会变成化石,也没有办法确定我们祖先的大脑里发生过什么——但这种说法似乎是可信的。我们可以相对清楚现代人类的大脑是如何工作的,因为可以进行与大脑结构和功能相关的实验,而这两者都与基因有关。

来源 | 《谁在掷骰子?不确定的数学》

作者 | [英] 伊恩•斯图尔特

译者 | 何生

低估理解大脑的困难程度是不明智的——即便要弄明白果蝇的大脑也很难,更不用说高度复杂的人类大脑了。黑腹果蝇是遗传研究的主要对象,它的大脑包含大约 135 000 个神经元,它们通过突触连接在一起,突触在神经元之间传递电信号。科学家们眼下正在研究这个被称为果蝇连接组的网络结构。目前,在果蝇大脑里的 76 个主要分区中,只有 2 个分区完成了绘制。所以,我们甚至还不知道果蝇连接组的结构,更谈不上它的工作方式。数学家们知道,即使是一个由 8 到 10 个神经元组成的网络,也能完成一些令人非常费解的事,因为非线性动力系统就是这种网络最简单的现实模型。网络具有一般动力系统所不具备的特征,这可能就是大自然如此频繁地用到它们的原因。

人类大脑有大约 1000 亿个神经元、超过 100 万亿个突触。别的脑细胞可能也参与运作,尤其是胶质细胞,它们的数量与神经元大致相同,但其功能尚不明确。绘制人类连接组的研究也正在进行中,这并不是为了让我们能模拟大脑,而是因为它将为今后所有的大脑研究提供一个可靠的数据库。

如果数学家们连一个只有 10 个神经元的“大脑”都不能理解,那么理解一个有 1000 亿个神经元的“大脑”的出路又在何方呢?就像天气和气候一样,这完全取决于你提出的问题是什么。某些有 10 个神经元的网络可以被理解得很细致。即使整个大脑复杂而微妙,但大脑的某些部位是可以被搞明白的。人们可以梳理出组织大脑的一些通用原则。总之,这种方法是“自下而上”的,它先列出各部件及其连接方式,然后逐步向上描绘出整个系统的运作方式,它并不是唯一的。最明显可以替代它的是“自上而下”的方法,这种方法基于大脑的大规模特征及其行为状况进行分析。我们可以在实践中用一种非常复杂的方式将两者结合起来。事实上,得益于揭示神经元网络如何连接、运作的技术的进步,以及关于这种网络运行状况的新数学思想的出现,我们对自己大脑的了解程度正在迅速加深。

大脑功能的许多方面都可以被认为是某种决策。当我们观察外部世界时,视觉系统必须找出它所看到的物体,猜测这些物体的状况,评估它们潜在的威胁或收益,让我们根据这些评估采取行动。心理学家、行为科学家和人工智能工作者一致认为,在某些重要方面,大脑很像一台贝叶斯决策机。它体现了对世界的信念,这些信念短暂或永久地连入了脑的结构里,这使得它做出的决策与贝叶斯概率模型里出现的结果非常相似(之前我说过,我们对概率的直觉通常是相当糟糕的。它和这里的说法并不矛盾,因为这些概率模型的内部运作并不是可有意识地获取的)。

大脑是贝叶斯化的观点,解释了人类面对不确定性的许多其他特征。特别是,它有助于解释为什么迷信如此容易生根。贝叶斯统计主要阐释了概率是信念的程度。当我们评估某个概率是对半开的时候,实际上是说,我们愿意相信和不愿意相信它的程度相同。因此,我们的大脑已经进化到可以体现对世界的信念,而这些信念是短暂或永久地与大脑的结构连在一起的。

不光人类的大脑是这样工作的。我们的大脑结构可以追溯到遥远的过去,也就是那些哺乳动物甚至爬行动物的进化祖先。那些生物的大脑也体现了“信念”。它不是我们如今口头说的那种信念,比如“打破镜子会‘倒霉’七年”。大多数人类自己的大脑信念也并非如此。我指的是,诸如“倘若这样伸出舌头,我就更有可能捉到苍蝇”之类的信念,它被写进了大脑中用于激活相关肌肉的那些区域里。人类的语言额外为信念增加了一层,让表达信念成为可能,更重要的是,还把信念传递给其他人。

为了建立一个简单但又包含丰富信息的模型,我们假设大脑中有一个区域包含了许多神经元。它们可以通过具有“连接强度”的突触连在一起。有些神经元发出弱信号,而有些发出强信号,还有些根本不存在,所以不发出任何信号。信号越强,接收信号的神经元的反应就越大。我们还可以用数值表示强度,这在详细说明数学模型时很有用:用某些单位度量的话,可能弱连接的强度是 0.2,强连接的强度是 3.5,不存在的连接强度是 0。

当神经元对传入的信号做出反应时,其电气状态会快速发生变化——它会“兴奋”。这样,就产生了一种可以传递给其他神经元的电脉冲,而传递给哪些神经元由网络的连接决定。当传入的信号把神经元的状态推到某个阈值以上时,神经元就会兴奋。而且,有两种不同类型的信号:一种是兴奋性的,它会使神经元兴奋;另一种则是抑制性的,它会使神经元停止兴奋。这就好像神经元会将传入信号的强度求和,兴奋性信号为正,抑制性信号为负,只有当和足够大时,神经元才会兴奋。

在新生儿的大脑中,许多神经元是随机连接的,但随着时间的推移,某些突触会改变它们的强度。有些突触可能会被完全移除,也会生长出一些新的突触。唐纳德·赫布(Donald Hebb)在神经网络里发现了一种“学习”的模式,这种模式如今被称为赫布型学习。“同时兴奋的神经细胞会连在一起”,也就是说,如果两个神经元几乎同步兴奋,那么它们之间的连接强度就会变大。在贝叶斯信念的语境里,连接的强度代表了大脑的信念程度,即当其中的一个神经元兴奋时,另一个也应该会兴奋。赫布型学习会强化大脑的信念结构。

心理学家发现,当人们被告知一些新信息时,不只是把它们记进脑子。从进化的角度来看,这会是灾难性的,因为相信别人告诉你的一切并不是一个好主意。人会说谎,试图误导别人,通常是为了能控制他们。大自然同样会说谎,经过仔细分析,摇摆的豹尾可能只是悬着的藤蔓或水果,竹节虫会假装成树枝。所以,当接收到新信息时,我们会根据自己已有的信念对其做出评估。如果足够机智,我们会评估信息的可信度。如果信息源可靠,我们更容易相信它;倘若信息源不可靠,那么我们就不太会相信它。是否接受新的信息,并据此转变自己的信念,是我们内心在权衡对已经相信的东西、它们与新信息之间的联系,以及对新信息真实性的信赖程度等因素后得到的结果。这种权衡通常发生在潜意识中,但我们也可以对信息进行有意识的演绎。

在一个自下而上的解释中,发生的事情就是复杂的神经元阵列都在兴奋,它们彼此发送信号。这些信号如何相互抵消,又怎样相互增强,决定了新信息能否被接受,而连接强度也会随之改变。这已经解释了为什么很难说服“真正的信徒”,让他们相信自己错了,即便证据对其他人而言似乎具有压倒性。如果某人对不明飞行物有强烈的信念,而美国政府公布了一则新闻,解释某次所谓的目击实际上是一个气球实验,但他的贝叶斯大脑几乎肯定会把这种解释当作宣传。新闻很可能会强化他们的信念,即他们在这个问题上不信任美国政府,他们会庆幸自己没有轻信美国政府的谎言。信念是双向的,所以,通常在没有独立验证的情况下,那些不相信不明飞行物的人会把这种解释当作事实来接受,这些信息会强化他们不相信不明飞行物的信念。他们会庆幸自己没有那么容易上当,去相信不明飞行物是存在的。

人类的文化和语言使一个大脑的信仰系统转移到另一个大脑成为可能。这个过程既不精准也不可靠,但它是有效的。根据不同的信仰和研究其过程的人,“过程”的名字可以被当作“教育”“洗脑”“把孩子培养成好人”等。小孩的大脑是可塑的,他们评估证据的能力还在发展:想想圣诞老人、牙仙和复活节小兔——尽管孩子们很聪明,很多孩子知道自己必须“演戏”才能得到奖励。有一句格言:“让我把孩子培养到七岁,我就能塑造他的一生。”这句话可能有两种含义:一个含义是,年幼时学到的东西持续时间最长;另一个含义是,让孩子接受某种信仰体系,会让他们在成年后一直牢记。可能两者都是对的,而且从某种观点来看,它们是一样的。

贝叶斯大脑理论源自很多科学领域:除了显然的贝叶斯统计之外,还包括机器智能和心理学。19 世纪 60 年代,人类感知物理学和心理学的先驱赫尔曼·亥姆霍兹(Hermann Helmholtz)提出,大脑通过建立外部世界的概率模型来组建认知。1983 年,在人工智能领域工作的杰弗里·欣顿(Geoffrey Hinton)又提出,人类的大脑是一台机器,在观测外部世界时,它会对遇到的不确定性做出决策。20 世纪 90 年代,这个思想成了基于概率论的数学模型,它包含了亥姆霍兹机的概念。它不是某种机械装置,而是一个数学抽象,由两个经过数学模型化的“神经元”网络组成。一个是自下而上的识别网络,它以真实数据作为训练对象,并通过一组隐变量表示。另一个是自上而下的“生成”网络,它生成这些隐变量的取值,由此得到数据。训练过程用一种学习算法来修改这两个网络的结构,使它们能够准确地对数据进行分类。这两个网络被轮流修改,整个过程被称为清醒–睡眠算法。

“深度学习”有更多层类似的结构,目前它在人工智能领域取得了相当大的成功。它的应用包括计算机对自然语言的识别,以及计算机在中国围棋中取得的胜利。在此之前,人们已经证明和计算机下西洋跳棋永远只能平局,即使打法再完美也只能如此。1996 年,IBM 的“深蓝”挑战国际象棋特级大师、世界冠军加里·卡斯帕罗夫(Garry Kasparov),但它在一场 6 局赛中以 4 : 2 落败。经过大幅改良后,“深蓝”在随后的比赛中以 6295ab47e60e8b9be0c78056779e2135.png 获胜。然而,这些程序用的都是暴力算法,而不是用来下赢围棋的人工智能算法。

围棋起源于 2500 多年前的中国,是在一个 19 + 19 的棋盘上进行的游戏,它表面上简单,实际上深不可测。两位棋手各执黑子和白子,把棋子轮流摆在棋盘上,将对方的子围住吃掉。谁围的地盘大,谁就获胜。围棋在数学上的严密分析非常有限。戴维·本森(David Benson)发明了一种算法,能判断出在什么情况下,无论对手如何落子,某块棋都不会被围住 [66]。埃尔温·贝勒坎普(Elwyn Berlekamp)和戴维·沃尔夫(David Wolfe)分析了一盘棋结束时复杂的数学情况,此时棋盘上的位置多被占领,可以落子的地方比平常更扑朔迷离。在那个阶段,游戏实际上已经分裂成好几块几乎相互独立的区域,棋手必须决定接下来在哪块区域落子。他们的数学技巧将每个位置与某个数值——或者说是更深奥的结构联系起来,并把这些数值组合起来,为获胜提供一些规则。

2015 年,谷歌的深思(DeepMind)公司测试了一款围棋算法 AlphaGo,这个算法基于两种深度学习网络:一种是决定棋盘盘面优势情况的价值网络,另一种是决定下一步行动的策略网络。这些网络采用人类高手对弈和算法互博的棋局训练。随后,AlphaGo 与顶级职业棋手李世石(Lee Sedol)对弈,并以 4 : 1 获胜。程序员找到了 AlphaGo 输了一局的原因,并修正了策略。2017 年,AlphaGo 在一场三局比赛中击败了世界排名第一的柯洁。AlphaGo 的“棋风”有一个有趣的特点,表明深度学习算法并不需要像人脑那样运作。它经常会把棋子下在一些人类棋手根本不会考虑的位置——并最终取得胜利。柯洁说:“人类数千年的实战演练进化,计算机却告诉我们人类全都是错的。我觉得,甚至没有一个人沾到围棋真理的边。”

人工智能应该以与人类智能相同的方式工作,在逻辑上是没有道理的,这也是用形容词“人工”的一个原因。然而,这些由电子电路体现的数学结构,和神经科学家开发的大脑认知模型有一些相似之处。因此,在人工智能和认知科学之间出现了一个创造性的反馈回路,它们彼此借鉴对方的思路。有时候在某种程度上,我们的大脑和人造大脑似乎是利用相似的结构原理来工作的。然而,从构成的材料和信号处理过程的方式来看,它们的差别当然是非常大的。

我们用视错觉举例说明这些概念,尽管它们实际上具有更动态的数学结构。当含糊不清或不完整的信息呈现给一只或一双眼睛时,视觉会产生一些令人困惑的现象。含糊不清是不确定性的一种,我们不能确定自己看到了什么。接下来,我将简要介绍其中的两种不同类型。

第一种类型是由詹巴蒂斯塔·德拉波尔塔(Giambattista della Porta)在 1593 年发现的,被收录在他的《折射论》(一本光学专著)中。德拉波尔塔把两本书分别放在两只眼睛前。他写道,他可以一次阅读其中的一本书,并且还能把“视觉能力”从一只眼睛移到另一只,实现阅读另外一本书。这种效应如今被称为双目竞争。当两幅不同的图像分别呈现给两只眼睛时,就可能会产生交替感知,认为它们不是两幅分开的图像,这是大脑“自以为”看到的东西。

第二种视错觉被称为多稳图形。当无论静止还是运动的某幅单一图像可以通过多种方式感知时,就会出现这种情况。一个典型的例子是内克尔立方体(图 1 左图),它是由瑞士结晶学家路易·内克尔(Louis Necker)在 1832 年发现的,这种立方体看起来会在两个不同方向之间反复;另一个例子是由美国心理学家约瑟夫·贾斯特罗(Joseph Jastrow)在 1900 年创作的鸭兔错觉(图 1 右图),这个图形在一只不怎么像的兔子和一只稍微有点儿像的鸭子之间反复。

41779ea3ca589ad286f51b227a043c82.jpeg

图 1 左图:内克尔立方体。右图:贾斯特罗鸭兔错觉

有一种简单模型可以感知内克尔立方体,它是一个只有两个节点的网络。这两个节点代表神经元或多个神经元组成的小网络,不过该模型只能拿来当作示意。其中一个节点与立方体的一个感知方向对应(假设已经完成了对这个方向做出响应的训练),另一个节点则与立方体相反的感知方向对应。这两个节点通过抑制性连接连在一起。这种“赢者通吃”的结构很重要,因为抑制性连接确保了如果一个节点被激活,那么另一个节点就不会活跃。所以网络在任何时候都会做出一个明确的决策。建模过程中的另一个假设是,决策是由更活跃的节点做出的。

起初,两个节点都不活跃。然后,当眼睛里出现内克尔立方体的图像时,节点接收到触发活跃的输入。但是,“赢者通吃”的结构意味着两个节点不能同时活跃。在数学模型里,它们轮流活跃:先是第一个更活跃一些,接下来变成第二个更活跃。从理论上讲,这种交替会定期重复,但实际观察到的情况并非如此。受试者报告了类似的感知变化,但它们发生的时间间隔毫无规律。这种变化通常被解释为来自大脑其他区域的随机影响,但尚有争议。

同样的网络也对双目竞争进行了模拟。在这种场景下,这两个节点对应于受试者看到的两幅图像:一幅对应左眼,另一幅对应右眼。人们无法感知到这两幅图像是重叠的;相反,他们轮流看到了其中一幅或另一幅。同样,这是发生在模型里的情况,尽管感官之间切换的时间间隔更有规律性。如果数学模型只是预测在两种已知的可能性之间切换,那就有点儿无聊了。在稍微复杂一点儿的环境里,类似的网络还会以更令人惊讶的方式运作。一个经典的例子是伊洛纳·科瓦奇(Ilona Kovács)和他的同事进行的猴子–文本实验。在这个例子中,有一张猴子(它看起来像一只小猩猩,其实是一只猿,不过大家称它为猴子)照片和一张绿底蓝字的图片,它们都被分成大小相近的 6 小块。然后,每幅图像中的三块区域与另一幅图中的对应区域互换,生成两张混合图像。分别将这两幅新的图像展示给受试者的左眼和右眼。

受试者会看到什么呢?大多数人报告,他们会交替看到两种混合的图像。这很有道理:波尔塔的那两本书就是如此。就好像一只眼睛看到了,然后另一只眼睛也看到了。但有些受试者报告,完整的猴子图像和完整的文本也会交替出现(图 2)。对此有一种似是而非的解释,这些人的大脑“知道”完整的猴子和文本应该是什么样子,所以大脑会把合适的部分拼接在一起。然而,由于大脑看到的是两种混合物,它然不能确定看到的是哪一个,因此它会在两者之间反复。但是,这并不能令人信服,也不能真正解释为什么有些受试者看到的是一对图像,而另一些人看到的却不同。

1449a39b8567dc4fa8c33b58eae3c82f.jpeg

图 2 如果将前两幅“混合”图像分别展示给每只眼睛,有些受试者会交替看到后两幅完整图像

数学模型更能说明问题。神经学家休·威尔逊(Hugh Wilson)提出了一种大脑高级决策网络模型,我称其为威尔逊网络模型。在最简单威尔逊网络模型里,(未经训练的)威尔逊网络是一组矩形节点阵列。它们可以被认为是模型神经元或者神经元群,不过由于是建模,它们没什么生理学上的意义。在竞争环境中,阵列中的每一列都对应于呈现给眼睛的图像的一个“属性”,它可以是某个特征,如颜色或方向。每个属性都有一组选择,例如,颜色可以是红色、蓝色或绿色,方向可以是垂直、水平或斜向。这些离散的可能性就是那个属性的“标准”,每个标准对应于该属性列中的一个节点。

任何特定的图像都可以被看作对各个标准选择的组合,每个相关属性都有一个标准。例如,红色水平图像结合了颜色列的“红色”标准和方向列的“水平”标准。威尔逊网络的体系结构是通过做出更强烈的响应来“学习”特定标准(每个属性有一个标准)的组合,以实现检测出不同的图形。在每一列,所有不同的节点对通过抑制耦合器相互连接。无须更多输入或修改,该结构就在列上创建了“赢者通吃”的动态,因此在不断变化的过程中,通常只有一个节点是最活跃的。接着,在列上检测其属性所对应的标准。模拟图像呈现给眼睛的训练,是由在适当标准组合的对应节点间添加兴奋性连接来模仿的。在一个竞争模型中,两幅图像都添加了这种连接(图3)。

d6b19cd4db2dbbbb9b8acb5b6d6f7c47.jpeg

图 3 左图:未经训练的威尔逊网络,它有 5 个属性,每个属性有 3 种标准。虚线是抑制性连接。右图:图形(画上阴影的每个属性里的标准)是由这些节点之间的兴奋性连接(实箭头)表示的。将这些连接添加到原始网络中,可以训练它识别这种图形

凯西·迪克曼(Casey Diekman)和马丁·戈卢比茨基(Martin Golubitsky)已经证明,威尔逊的竞争网络模型有时会产生意想不到的结果。对猴子–文本实验而言,动力学预测该网络可以以两种不同的方式振荡。正如我们预想的那样,它可以在两种学到的图形(也就是眼睛看到的混合图像)间切换。但它也可以在完整的猴子和文本之间切换。出现哪种情况取决于连接强度,这表明受试者之间的差异与受试者大脑中相应神经元群连接的强弱有关。令人吃惊的是,用最简单的威尔逊网络来代表实验,也能准确地预测实验观测到的结果。

威尔逊网络是示意性的数学模型,旨在阐明简单的动态网络在原则上是怎么根据从外部世界接收到的信息做出决策的。更具有说服力的是,大脑中的某些区域与威尔逊网络的结构非常相似,它们做决策的方式也大同小异。用于处理来自眼睛的信号从而确定我们正在看什么的视皮质,就是一个很好的例子。

不管教科书上怎么说,人的视觉和照相机的工作原理并不一样。平心而论,眼睛检测图像的方式有点儿像照相机,晶状体将入射的光线聚焦到后面的视网膜上。相较于老式胶片,视网膜更像是现代数码相机中的电荷耦合器件(CCD)。它有大量独立的感受器,即视杆细胞和视锥细胞,它们是能对入射的光线做出反应的感光神经元。视锥细胞有三种,每种都对特定波长范围内的光更敏感,也就是对某(类)颜色的光更敏感。一般来说,这些颜色分别是红色、绿色和蓝色。视杆细胞在弱光下有反应。它们对青色(“淡蓝色”)波长的光反应最为强烈,但我们的视觉系统会把这些信号当作灰色阴影,这就是我们在晚上看不到太多颜色的原因。

接下来发生的,才是人类视觉与相机产生显著差别的地方。这些传入的信号通过视神经传输到大脑的视皮质。我们可以把视皮质当作一系列薄薄的神经元层,它的作用是处理从眼睛接收到的信号图形,以便大脑的其他区域能够识别它们看到的东西。每一层都会动态地响应传入信号,就像威尔逊网络对内克尔立方体或猴子–文本实验进行响应一样。这些响应被传输到下一层,而那一层的结构又会让它响应不同的特征,以此类推。信号也会从深层传递到表层,影响它们对下一批信号的响应。最终,在这一连串的信号中,某些东西决定了“那是奶奶”或者其他。它可能是某个特定的神经元,通常被称为祖母细胞,或者它也可能是以某种更复杂的方式实现的。我们还不知道。一旦大脑识别出奶奶,它就会从别的区域调出其他信息,比如“帮她脱下外套”“她来的时候总喜欢喝杯茶”“她今天看起来有点焦虑”等。

当照相机连上计算机时,它也开始执行类似的任务,比如用面部识别算法标识出照片上人物的名字。虽然视觉系统并不像照相机,但照相机却越来越像视觉系统。

神经科学家们已经对视皮质的连接状况进行了详细的研究,而探测大脑连接的新方法无疑也会得到更加精确的结果。利用对电压敏感的特殊染料,科学家们绘制出了动物视皮质的顶层(V1)连接的通用规则。粗略地说,V1 可以检测眼睛看到的直线片段,并计算出这些直线的方向。这对找出物体的边界很重要。事实证明,V1 的结构很像威尔逊网络,它在不同方向上用直线进行训练。网络中的每一列对应于 V1 中的一个“超列”,它的属性是“在该位置看到的直线的方向”。该属性的标准是一个粗略的集合,里面包含了这条直线可能的方向。

真正巧妙的部分是模拟在威尔逊网络中学习图形。在 V1 中,这些图形是较长的直线,它们跨越了多个超列的视界。假设单个超列探测到了 60°角的某一小段直线,那么用于这个“标准”的神经元就会兴奋。然后,它将兴奋性信号发送给相邻超列里的神经元,但目标只是那些同是负责 60°角标准的神经元。并且,这些连接只连到 V1 中位于线段延长线上的那些超列。它并不非常精确,同时还有一些其他较弱的连接,但最强的那些连接与我描述的很接近。V1 的结构使它能够检测直线及其方向。如果它看到一条这样的直线的一部分,它就“假设”这条直线会延长,因此会填补上间隙。但它并不是盲目的。如果其他超列有足够强烈的信号与假设矛盾,那些信号就会占上风。例如,当一个物体的两条边相交时,在角上的方向会产生矛盾。将这些信息发送到下一层,你就会用到一个与检测直线一样的用于处理角的系统。最后,顺着这一连串信息,你的大脑会识别出奶奶。

我们大多数人在某种程度上经历过一种不确定性:“我在哪里?”神经学家爱德华(Edvard)、梅–布里特·莫泽(May - Britt Moser)和他们的学生在 2005 年发现,老鼠的大脑里有一种特殊的神经元,称为网格细胞,它可以模拟老鼠在空间里的位置。网格细胞位于大脑的某个区域,这个区域的名字有点拗口:背尾内侧内嗅皮层。它是位置和记忆的核心处理单元。就像视皮质一样,它也有一个分层的结构,并且不同层之间具有不同的兴奋模式。

科学家们将电极植入老鼠的大脑,然后让它们在一个开放的空间里自由活动。当老鼠移动时,他们监测老鼠大脑中有哪些细胞是兴奋的。事实证明,每当老鼠在众多空间小块(“兴奋区”)中的某块时,特定的细胞就会兴奋。这些小块区域构成一个六边形网格。研究人员推断,这些神经细胞构建了对空间的心理表征,即在某种坐标系统下的认知地图,告诉老鼠的大脑自己在哪里。网格细胞的活动随着动物的移动而不断更新。无论老鼠朝哪个方向走,有些细胞始终都会兴奋;另一些细胞则与方向有关,由此对方向做出反应。

我们还不清楚网格细胞是如何告诉老鼠自己在哪里的。有意思的是,老鼠大脑中网格细胞的几何排列是不规则的。这些网格细胞层通过整合老鼠四处游荡时的微小运动,以某种方式“计算”它所处的位置。在数学上,这一过程可以通过矢量计算来实现,在矢量计算中,运动物体的位置是将许多微小的变化相加后得到的,而这些变化是有大小和方向的。在更好的导航仪器被发明之前,水手们基本上就是用这种“航位推算法”导航的。

我们知道网格细胞的网络可以在没有任何视觉输入的情况下工作,因为即使在全黑的环境中,兴奋的模式也不会改变。不过,它对视觉输入的响应非常强烈。例如,假设老鼠在一个圆柱形的笼子里奔跑,笼壁上有一张卡片作为参考点。我们选择某个特定的网格神经元,并测量对应的由空间小块组成的网格。然后旋转圆柱体后再次测量,此时网格也会有同样的旋转。把老鼠放在一个新的环境后,网格及其间距都不会改变。无论网格细胞怎么计算位置,整个系统的稳健性都很好。

2018 年,安德烈亚·巴尼诺(Andrea Banino)和他的同事们公布了如何使用深度学习网络执行类似导航任务。他们的网络有很多反馈回路,因为导航似乎赖于把一个处理步骤的输出作为下步的输入,实际上,它是一个以网络为迭代函数的离散动力系统。他们利用各种啮齿类动物(如大鼠和小鼠)觅食时走过的路径,辅以大脑其他部分可能会发送到网格神经元的信息,来训练这个网络。

该网络学会了在各种环境中有效地导航,并且可以在不损失性能的情况下把所学内容转移到新的环境中。这个研究团队为它设置某个特定目标来进行测试,还在更高级的环境里(整个设置都是在计算机中模拟的)测试它通过迷宫的能力。他们使用贝叶斯方法评估统计显著性,并将数据拟合到由三个不同的正态分布组成的混合分布上。

其中有一个值得注意的结论是,随着学习过程的深入,在深度学习网络里,有一个中间层发展出了与网格神经元类似的活动,即当动物处于由空间小块组成的网格中的某个区域时,它就会变得兴奋起来。对网络结构的详细数学分析表明,这是某种模拟的矢量计算。没有理由假设网络会像数学家那样,写下矢量后把它们加起来。尽管如此,他们的结果支持了一个理论,那就是网格细胞对基于矢量的导航而言至关重要。

更笼统地说,大脑用来理解外部世界的“回路”是在某种程度上模仿外部世界。大脑的结构已经进化了几十万年,“连接”着我们周遭的信息。正如我们所了解的,它也会在较短的时间内发生变化,学习“优化”连接结构。我们学到的东西受教育所限。因此,如果我们从小就被灌输某些信念,它们就会根深蒂固地扎在我们的大脑里。这可以看作对前文提到的那句格言在神经科学上的验证。

于是,成长环境强力地约束着文化信念。我们通过熟悉的赞美诗、支持的球队、演奏的音乐来确定自己在世界上的位置,以及与周围人的关系。对多数人而言,刻在我们的大脑里的“信仰”,和那些可以利用证据进行理性辩论的东西并没有太大不同。但是,除非认识到两者的区别,否则我们所持的那些没有证据支持的信仰很可能是有问题的。不幸的是,这些信仰在我们的文化中非常重要,这也是它们始终存在的原因之一。建立在信仰而非证据基础之上的信念对区分“我们”和“他们”很有效。是的,我们都“相信”2+2=4,所以它不会让你我有所不同。但是,你会在每周三都向猫女神祈祷吗?我认为你不会。你不是“我们”的一分子。

当我们在小团体中生活时,这种方法非常有效,因为我们遇到的几乎每一个人都会向猫女神祈祷,倘若不这样做,可能就会遭到警告。然而,哪怕只是把这种行为推广到族群里,也有可能引发矛盾,甚至经常导致暴力事件。在当今这个互联的世界里,它正成为一个大灾难。

眼下,民粹主义政治用新词“假新闻”来形容那些曾被称为“谎言”或“宣传”的东西。辨别真假新闻越来越难了。任何一个有几百美元闲钱的人都能掌握巨大的计算力。高级软件的广泛使用正让全球变得民主化,这在原则上是件好事,但随之而来的,常常是使区分真理与谎言也变得更复杂。

因为用户可以定制他们所看到的信息,强化自己的偏好,所以人们越来越容易生活在信息泡沫里,你能得到的唯一新闻就是你想听到的。柴纳·米耶维尔(China Miéville)在《城与城》中夸张地表述了这种倾向,这部科幻–犯罪类剧集讲的是贝斯厄尔市重案组的博尔洛探长调查凶手的故事。他多次跨越城际线,前往该市的姊妹城厄尔科马市,与那里的警察合作。一开始,剧集的画风有点儿像柏林墙倒塌前,城市被分为东西两部分的柏林,但你会慢慢发现,这座城市的两部分在地理空间上是相同的。每一个城市的市民从呱呱坠地起就被训练视对方为无物,即使他们穿梭于对方的建筑物和人群中。如今,许多人在互联网上也做着相同的事情,他们沉迷于确认偏差,因此我们收到的所有信息都在加强一个观点,那就是自己是正确的。

为什么我们会如此轻易地被假新闻操纵?这是因为古老的贝叶斯大脑是基于具体信念的。我们的信念不像计算机里的文件,只要动一下鼠标就可以删除或替换。它们更像是连在一起的硬件。改变连接模式很困难。我们越是坚信,哪怕只是试图相信,改变也就越难。我们相信的每一条假新闻,都会强化那些连接,因为它符合我们的需要。每一条我们不想相信的新闻都被无视了。

我不知道有什么好办法可以避免这类情况。教育吗?如果某个孩子去了一所宣扬特定信念的特殊学校,会发生什么呢?如果禁止教授那些事实明确但与信念不同的学科,又会发生什么呢?到目前为止,在人类所有的发明设计里,科学是区分事实和虚构的最佳方法,但如果政府决定削减研究这些令人不快的事实的经费来对付它们,那会发生什么呢?在美国,联邦资金已经不能用于合法研究持枪权带来的影响了,特朗普政府就曾考虑对气候变化做相同的事情。

各位,事实是不会就此消失的。

有一种建议是,我们需要新的监督者。但是一个无神论者信任的网站对一个真正的教徒而言就是诅咒,反之亦然。如果某个邪恶的公司控制了我们信任的网站,会发生什么?这一直不是一个新问题。正如古罗马诗人尤维纳利斯(Juvenal)在公元 100 年左右写就的《讽刺诗》中所说的那样,谁来监督监督者?谁来监视那些监视者本人?不过,我们今天面临的问题更糟糕,因为一条推文就可以传遍整个地球。

也许,我太悲观了。总体而言,更好的教育使人们更加理性。当人类生活在洞穴和丛林里时,贝叶斯大脑“迅速而粗糙”的生存算法提供了很好的帮助;但在充斥着错误信息的时代,它可能不再适用了。

  推荐阅读

ab547303bc67b23b267c73518bec041a.jpeg

《谁在掷骰子?不确定的数学》

作者:[英] 伊恩•斯图尔特

译者:何生

几个世纪以来,在好奇心以及精确预测未来的“野心”驱动下,具有开拓意识的数学家希望从概率论和统计学着手,减少各种“不确定性”。但他们发现,某些问题始终难以解决,而直觉也在不断误导人类。

本书探讨了关于“不确定性”的有趣故事和相关科学知识。知名科普作家伊恩·斯图尔特巧妙地建立起一个易于理解、充满想象力的数学框架,从概率论、统计学、贝叶斯方法、混沌理论等角度展现了“不确定性”在金融市场、天气预报、人口普查、医学、量子物理学和宇宙学等诸多领域中的重要作用,展望了与不确定性问题紧密相关的科学门类的广阔研究前景。

02

eaeeeb1daade84d3297d6465cea3996a.jpeg

《趣学贝叶斯统计:橡皮鸭、乐高和星球大战中的统计学》

作者:[美] 威尔·库尔特(Will Kurt)

译者:王凌云

本书用十余个趣味十足、脑洞大开的例子,将贝叶斯统计的原理和用途娓娓道来。你将从直觉出发,自然而然地习得数学思维。读完本书,你会发现自己开始从概率角度思考每一个问题,并能坦然面对不确定性,做出更好的决策。

03

1b6b485749d9d7a89af78fd136fd4416.png

《贝叶斯的博弈:数学、思维与人工智能》

作者:黄黎原

译者:方弦

法国数学类科普书、大学数学参考及教材类图书畅销书目,在机器学习、人工智能、逻辑学和哲学等众多领域中,探索贝叶斯定理蕴藏的智慧与哲理。

贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。

04

2c3915373a381f118a84e6545eda6db2.jpeg

《贝叶斯数据分析(第2版)》

作者:约翰·K. 克鲁施克(John K. Kruschke)

译者:王芳

1.美国加州大学伯克利分校博士,特罗兰研究奖获得者,美国印第安纳大学心理学和脑科学名誉教授、统计学副教授约翰·K. 克鲁施克,拥有近25年的统计学教学经验总结!

2.极佳的贝叶斯统计入门书籍!如果你认为统计学很难,或许是因为你在入门时错过了本书。

3.原著豆瓣高达9.4分!全面覆盖实用的贝叶斯统计知识,可读性强!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值