1916 年,日本数学家挂谷宗一提出了这样一个问题:“武士随身带刀,上厕所也会带刀。万一在厕所里打起来,要能在厕所里挥刀应战,厕所的面积最小是多少呢?”
这个随口一提的问题,后来被称为挂谷问题。问题看似简单,却困扰了全世界的数学家近百年。
而近日,北京大学校友、现纽约大学数学副教授王虹与加拿大不列颠哥伦比亚大学的 Joshua Zahl 共同解决了这个困扰数学界数十年的三维挂谷(Kakeya)集合猜想。相关成果被数学界泰斗、菲尔兹奖得主陶哲轩在个人博客上高度评价,引发学界热议。
专业的讨论我们不去参与,只说这个问题的重要性:挂谷猜想与当代数学领域里最重大的未解决问题之一紧密相连,故而其成为几何测度论的核心,为这一新兴领域开辟了广阔的研究空间。
下面从小白的视角去了解一下挂谷猜想到底是一个什么样的数学问题?
01
挂谷猜想
【挂谷问题】
令长度为 1 的木棒旋转一周,当木棒扫过的面积最小时,形成的图形是什么样的?
例如,木棒显然能在直径为 1 的圆中旋转一周。
圆的面积为,能不能在面积更小的图形中旋转一周呢?请大家仔细想想。挂谷想到了下面这样的图形。
这个图形是分别以正三角形的三个顶点为圆心用圆规画弧构成的,称为勒洛三角形。
这个图形的面积为,比圆的面积要小一点儿。
挂谷心想:“勒洛三角形就是最小的了吧?”同时代的数学家藤原和漥田却提出:“并不是!”这两位数学家发现,木棒在高为 1 的正三角形中也能旋转一周。
怎么样?非常丝滑的旋转,简直技术超群。这个图形的面积为,已经相当小了。事实上,已经证明在符合条件的所有凸多边形中,正三角形是最小的。没错,对于“凸多边形”,这就是最终答案。
然而,从这里开始才是挂谷问题的精髓。
如果把凹多边形也考虑进去会怎样呢?其实,木棒在五角星中也可以旋转。
虽然运动方式非常奇怪,但依然成功地让木棒旋转了一周。只不过这个图形的面积为 0.5877...,比正三角形的面积还是要大一点儿。
然而,现在放弃还太早了。
让我们增加星星的尖点数量试试看。
大家可以验证一下,和五角星一样,木棒依然能够旋转。尽管并不是单纯增加尖点就可以了,但使用这样的思路可以将面积缩小到左右!!这仅相当于最开始的圆形面积的 27 分之 1。
现在感到震惊还太早了。接下来还有更加“有病”的事实等着你。
其实,目前已经证明,只要改变形状,图形面积可以变得无穷小。
这到底是怎样一种图形呢?就是下页中这样的。
这种图形一般称为佩龙树。人们到底是怎样想到这种图形的呢?
简单来说,木棒在佩龙树中可以通过下图中的方法进行平行移动。
在数学中,“线段是没有宽度的”。巧妙利用这一特性,只要缩小θ 的角度,就可以缩小木棒扫过的面积。
用现实中的例子来说,就是一根比东京晴空塔还长的木棒可以在面积比你的手掌还小的图形中旋转。
这从直觉上说显然是非常难以理解的。
PS:到底为止是普通人可以理解的,如果对这个问题的破解有兴趣的,可以看王虹和Joshua Zahl用127页论文。
下面是一些其他“有病的数学“问题。
02
正方形平铺问题
在一个大正方形中平铺大小相同的小正方形。若要铺进 n 个面积为 1 的小正方形,那么大正方形的边长的最小值 s(n) 是多少?
以 4 个小正方形的情况为例,只要横纵各铺 2 个就可以毫无缝隙地铺满,因此 s(4) 的值为 2。那么如果是 5 个、23 个、100 个呢?这就是这个问题的目标,其中 s 代表 side(边)。
当初提出这个问题时,给出的模型一般是像上页图中那样用倾斜45° 的正方形进行组合,从直觉上一般也认为采用比较规则的铺法能铺得更紧密。
当然,在某些情况下这种铺法是最好的,但在 n 取某些值时,反倒是铺得歪一些能让 s(n) 取到更小的值。
上面的左图和右图分别是在铺 55 个和铺 71 个正方形的情况下,目前发现的最优解。这种看起来非常勉强的铺法居然是最优解,真是违反直觉。
如果你在日常生活中遇到要收纳好多个立方体盒子的情况,说不定稍微放歪一点儿会更好。
03
数学炼金术
20 世纪初,波兰数学家巴拿赫和塔斯基证明了一个非常令人震惊的定理,后来称为巴拿赫 - 塔斯基定理。根据这一定理,将一个球分割成有限个碎片并重新组合,可以形成两个同样大小的球。
简单来说,这个数学定理就是说“把西瓜打碎之后,用碎片进行巧妙的组合就可以拼出和原来大小一样的两个西瓜”。
怎么样,这个定理的内容简直令人难以置信吧?
如果这个定理实际上真能成立,那就可以无限切西瓜了,粮食问题也就解决了!能把一个球变成两个球,这可以说是炼金术了吧?这个定理过于违背常识,因此也被称为巴拿赫 - 塔斯基悖论(实际上并不是悖论)。
先说结论:
很遗憾,这个定理在现实世界中不成立。
但在数学世界中,能够证明它是成立的。
也就是说,这个定理告诉我们现实世界和逻辑(数学)世界是不同的。
那么,这个定理真的能成立吗?要证明巴拿赫 - 塔斯基定理有点难,但为了能够直观地理解它,让我们来做一个思想实验。
假设有一种仅由“A”和“B”两种字符构成的字符串,例如“A”“B”“AB”“ABBA”“BABBA”“BBBBBBBB...”等。假设有一本字典收录了所有这样的字符串。
接下来,将字典中的所有字符串分成两组,一组是以“A”开头的,一组是以“B”开头的,并将这两组分别命名为“字典 A”和“字典 B”。
字典 A 中收录了“A”“AA”“AAB”“ABBAA”等以“A”开头的字符串,而字典 B 中收录了“B”“BBA”“BAAB”“BABA”“BABBB”等以“B”开头的字符串。
那么,如果将“字典 A”和“字典 B”中所有字符串的第一个字符都去掉会发生什么呢?
“字典 A”中的所有字符串去掉第一个字符“A”后,就剩下“A”“AB”“BBAA”等由“A”和“B”构成的所有字符串,也就是和原本的字典一模一样了。
同样,“字典 B”中的所有字符串去掉第一个字符“B”后,就剩下“BA”“AAB”“ABA”“ABBB”等,也和原本的字典一模一样。
也就是说,我们用一本字典生成了两本一模一样的字典。
话说,在巴拿赫 - 塔斯基定理的证明中,使用了选择公理这一数学结论。
选择公理是指,当存在若干“非空集合”时,可以从每个集合中各取一个元素生成新的集合。字典的思想实验并不需要选择公理,但球的情况比较复杂,需要使用选择公理才能证明。
01
《数学不只有一个答案:16个问题引发的头脑风暴》
作者:[日]数学爱好者协会会长 一君
数学不只有一个答案,数学追求的也不仅仅是答案。
试着从不同的角度和不同的难度来思考同一个数学问题,得到不同的思路和不同的解答,这样的大脑锻炼对提升数学思维和综合应用能力都大有裨益……关键是,这实在太有趣了!
图灵出版的菲尔茨奖得主著作
《可变思考:数学与创造性思维》
作者:[日]广中平祐
译者:佟凡
日本数学大家、菲尔兹奖得主广中平祐著作!稻盛和夫力荐,呈现数学家观察事物的独特视角与思考方式。
1.稻盛和夫力荐,日本累计销售10万册!
2.菲尔兹奖得主理解“复杂”与“变化”的巧妙视角,用数学的智慧探索创造力的本质
3.讲述创造性思维的本质与根源传授学习、研究、教育中的创造性思维的模式与方法
01
《数学与创造:广中平祐自传》
作者:广中平祐
译者:逸宁
菲尔兹奖、日本学士院奖、日本文化勋章得主日本数学大家广中平祐亲笔自传
作者以解决“奇点解消问题”的故事为线索,讲述了自己如何学习数学、走上数学研究道路的历程,分享了在挑战数学难题过程中的思考方法与感悟,并就“数学与创造”“创造与情绪”“分析与大局观”等话题做了深入阐述。
02
《陶哲轩教你学数学》
作者:陶哲轩
译者:李馨
菲尔兹奖得主陶哲轩数学思维大解析,通过奥数竞赛习题解答,带你领悟数学之美。
本书是国际知名数学家陶哲轩15岁时的著作,从青少年的角度分析数学问题,主要是数学竞赛等智力谜题,用学生的语言解释思考过程,完整展现了少年陶哲轩的解题思路。
03
《一个定理的诞生:我与菲尔茨奖的一千个日夜》
作者:塞德里克•维拉尼
译者:马跃 杨苑艺
畅销世界的法国当代数学家传记,知名数学家塞德里克·维拉尼荣膺菲尔茨奖的精彩历程,真切感受数学研究生涯的艰辛与乐趣,了解数学家的日常工作与思维方式。
04
《惰者集:数感与数学》
作者:[日]小平邦彦
译者:尤斌斌
一览数学世界不可不谈的伟大定理、难题和争论
勾勒数学的全景,让课堂上的知识变得更清晰、更好懂
数学科普巨匠邓纳姆献给钟情数学以及单纯好奇“数学到底是什么”的读者
05
《我只会算术:小平邦彦自传》
作者:[日]小平邦彦
译者:尤斌斌
小平邦彦“抄书学数学”的传闻是真的吗?宽松的教育,是否会影响思考能力,又该如何改善?日本的现代数学研究是如何传承和发展的?
菲尔兹奖、沃尔夫奖、日本文化勋章得主日本数学大家——小平邦彦, 亲笔自传
澄清“抄书学数学”之传言,评判日本“宽松教育”的利弊得失
还原“懒惰凡人”到“菲尔兹奖得主”的真实样貌
讲述小平邦彦的数学学习心得与感悟,展现日本数学与科学发展的隐性脉络
06
《几何世界的邀请》
作者:[日]小平邦彦
译者:李慧慧
平面几何是观察判断与逻辑思考的精妙结合,是初等数学教育中培育创造力的好途径。本书为日本数学家、菲尔兹奖得主小平邦彦先生的几何入门作品,书中以欧几里得几何、希尔伯特几何、复数与几何为轴线,由浅入深,层层深入,从作为图形科学的几何、作为数学的几何等不同角度介绍完整的几何世界,是几何入门、训练思维与创造力的佳作。
07
《陶哲轩实分析(第3版)》
作者:[澳]陶哲轩(Terence Tao)
译者:李馨
本书源自华裔天才数学家、菲尔兹奖得主陶哲轩在加州大学洛杉矶分校教授实分析课程的讲义。
全书从分析的源头——数系的结构和集合论开始,然后引向分析基础,再进入幂级数、多元微分学和傅里叶分析,最后介绍勒贝格积分,几乎完全是以具体的实直线和欧几里得空间为背景,完美结合了严格性和直观性。