别再高价求了,这2本专业数学领域经典教材终于再版了!

图片

图灵此前出版了许多经典的数学教材,后来却绝版了不少,让许多读者深感遗憾。为此,我们重启专业数学教材的老书出版计划,陆续出版此前绝版的好书。此次再版的是两本口碑好书!

《金融时间序列分析(第3版)》是金融时间序列分析领域不可多得的杰作,自第1版问世以来,广受赞誉,产生了深远的影响。成为芝加哥大学商学院MBA、北京大学金融数学系授课教材。

本书全面介绍了金融时间序列分析的理论和方法,系统地讲解了金融计量经济模型及其在金融时间序列数据的建模和预测中的应用。

第3版使用开源的R软件包,可以对金融数据进行实证分析,也可以使用实例对相关计算和分析进行说明。本书还对金融计量方法的当前研究热点和一些最新研究成果进行了概述,例如实现波动率、条件风险值、统计套利及持续期和动态相关模型的应用。

第二本《泛函分析》则是数学界泰斗、阿贝尔奖和沃尔夫奖双料得主Peter D. Lax亲授,纽约大学、普林斯顿大学等名校教材。

全书在Lax教授多年来为纽约大学柯朗数学研究所研究生授课的讲义之基础上整理而成的。书中除了泛函分析的基本内容外,还介绍了一些非常重要的深刻论题,比如自伴算子的谱分解和谱表示、紧算子理论、不变子空间和强连续单参数半群等。

本书还涉及对于计算拓扑不变量十分重要的算子的指标、强有力的分析工具Lidskii迹公式、Fredholm行列式及其推广,以及源自于物理的散射理论及其他特殊论题。

《金融时间序列分析(第3版)》

金融时间序列分析考虑的是资产价值随时间演变的理论与实践.它是一个带有高度经验性的学科,但也像其他科学领域一样,理论是形成分析推断的基础.

然而, 金融时间序列分析有一个区别于其他时间序列分析的主要特点:金融理论及其经验的时间序列都包含不确定因素.

例如,资产波动率有各种不同的定义,对一个股票收益率序列, 波动率是不能直接观察到的. 正因为带有不确定性,统计的理论和方法在金融时间序列分析中起重要作用. 本书的目的是提供一些金融时间序列的知识,介绍一些对分析金融时间序列有用的统计工具,从而使读者获得各种经济计量方法在金融中应用的经验. 

第1章引入资产收益率的基本概念, 并简要介绍本书所讨论的一些过程. 

第2章回顾了一 些线性时间序列分析中的基本概念,如平稳性、自相关函数,引入了一些简单的线 性模型来处理序列的序列相关性,并讨论了带时间序列误差、季节性、单位根非平 稳性和长记忆过程的回归模型. 当存在条件异方差性和序列相关时,该章给出了协 方差阵相合估计的方法. 

第3章着重讨论了条件异方差性(资产收益率的条件方 差) 的建模,讨论了新近发展起来的用来描述资产收益率的波动率随时间演变的各 种经济计量模型. 该章还讨论了波动率建模的其他方法,包括使用高频交易数据和 一项资产的日最高价格和日最低价格进行建模. 

第4章讨论了金融时间序列中的 非线性性,引入了能区别非线性序列与线性序列的检验统计量,并讨论了几个非线 性模型. 该章还介绍了非参数估计方法和神经网络,并且展示了非线性模型在金融 中的各种应用. 

第5章考虑的是高频金融数据的分析,市场微观结构的影响及高频 金融的应用, 阐明了不同步(或不同时)的交易和买卖价格间的跳跃可能带来股票 收益的序列相关性. 该章还研究了不同交易之间持续时间的动态规律和一些分析 交易数据的计量经济模型. 

第6章引入了连续时间扩散模型和伊滕(Ito)引理,导 出了Black-Scholes 期权定价公式, 并应用一个简单的跳跃扩散模型来刻画期权市 场常见的一些特征. 

第7章讨论了极值理论、厚尾分布及其在金融风险管理中的 应用. 该章还特别讨论了计算金融头寸风险值(VaR)及金融头寸的预期赤字的各 种方法. 

第8章着重讨论多元时间序列分析和简单的多元模型,重点在于分析时间 序列之间的交叉延迟关系.该章还介绍了协整、一些协整检验以及门限协整,并用 协整的概念来研究金融市场中的套利机会,包括配对交易. 

第9章讨论了简化多元 时间序列动态结构的方法和降低维数的方法, 并介绍和演示了3种因子模型来分 析多个资产的收益率.

第10章介绍了多元波动率模型, 其中包括带时变相关系数 的模型, 同时还讨论了怎样对一个条件协方差阵进行重新参数化,使之满足正定性 的限制, 并降低波动率建模的复杂性. 

第11章介绍了状态空间模型和卡尔曼滤波, 还讨论了状态空间模型和本书中所讨论的其他计量经济模型之间的关系.该章还给 出了在金融方面应用的几个例子. 

最后,第12章介绍了统计文献中一些新近发展 起来的马尔可夫链蒙特卡罗方法,并把这些方法应用于各种金融研究的问题,如随 机波动率模型和马尔可夫转换模型的估计. 

本书着重强调应用和实证分析.每章都有实际例子,很多时候经济计量模型的 发展是由金融时间序列的实证特征来推动的. 必要时,本书还提供了用来分析数据 的计算机程序和命令.

金融时间序列分析(第3版)》

作者:Ruey S.Tsay

译者:王远林 王辉 潘家柱

权威性:芝加哥大学商学院MBA、北京大学金融数学系授课教材

前沿性:紧跟当前研究热点,涵盖前沿方法(高频数据分析、MCMC)

实战性:关注金融学核心问题,提供R语言实战代码及真实金融数据案例,兼顾学术严谨与业界需求

《泛函分析》

本书根据我多年来在纽约大学柯朗数学研究所教授二年级研究生泛函分析课程的讲义撰写而成. 它不是论文集也不是专论, 而是一本研究生教材. 书中大多数章节都短小精辟, 为的是易于读者消化所学内容. 当然并非所有内容都可以用简短的语言描述出来, 因此有些章节相对较长. 在每章中, 定理、引理和方程都是按照顺序连续标号的.

前 23 章的内容对读者的要求不是很高, 是很好的研究生阶段泛函分析入门课程的教材. 余下的内容可以用于研究生泛函分析或者 Hilbert 空间理论高级课程的教学.

当我还是个学生的时候, 当时仅有的泛函分析教材就是 Banach 在 1932 年所写的那本最早的经典教材; Hille 所著的书直到我毕业的时候才面世, 像是给我的毕业礼物. 有关 Hilbert 空间理论的教材, 有 Stone 于 1932 年出版的 Colloquium 和Sz.-Nagy 的 Ergebnisse. 

从那以后, 泛函分析的书籍越来越多, 先是出现了 Riesz和 Sz.-Nagy、Dunford 和 Schwartz 以及 Yosida 所著的书; 后来又出现了 Reed 和Simon 以及 Rudin 的书. 对于 Hilbert 空间理论, 出现了 Halmos 的优美而又简明的著作以及 Achiezer 和 Glazman 的教材, 我十分欣赏这些书, 它们让我受益匪浅. 

此后又出现了许许多多好的教材. 但是我相信, 本书还是给出了一些新东西:在内容编排顺序上, 理论内容之后紧跟具体的应用, 这使得抽象的内容变得有血有肉; 同时, 书中还包含了可以用泛函分析的观点澄清和解决的非常丰富的数学问题.

在选择论题时, 我听从了我的老师 Friedrichs 的警告:“如果你想把所知道的有关某论题的全部内容都放进去, 那么写一本书是很容易的.”本书给出了泛函分析的基本内容以及数学中一些不可缺少的深刻论题, 比如自伴算子的谱分解和谱表示、紧算子理论、Krein-Milman 定理、Gelfand 的交换 Banach 代数理论、不变子空间、强连续单参数半群. 本书还涉及对于计算拓扑不变量十分重要的算子的指标, 强有力的分析工具 Lidskii 迹公式, 沉睡近百年的 Fredholm 行列式及其推广, 还有源自物理的散射理论. 与此同时, 本书还包括了一些 (但不是全部) 与我的研究很接近的特殊论题.

那么, 哪些内容被省略了呢?非线性泛函分析, 为此我推荐 Zeidler 的四卷本专著. 除 Gelfand 的交换 Banach 代数理论以外的算子代数理论, 还有 Banach 空间几何理论, 让人高兴的是, 由 Bill Johnson 和 Joram Lindenstrauss 编著的有关此论题的一本手册已经由 North Holland 出版社出版阅读本书需要哪些预备知识呢?每位二年级研究生以及许多本科生都应该了解如下知识.

• 朴素集合论. 可数集, 连续统假设, Zorn 引理.

• 线性代数. 线性映射, 矩阵的迹和行列式, 矩阵和对称矩阵的谱理论, 矩阵函数.

• 点集拓扑. 完备度量空间, Baire 纲原理, Hausdorffff 空间, 紧集, Tychonov 定理.

• 单复变函数的一般理论.

• 实分析. Arzela-Ascoli 定理, R 上测度的 Lebesgue 分解, 紧集上的 Borel 测度.

历史上, 测度论比泛函分析出现得早. 测度论中的通常表述没有用到泛函分析的概念和构造. 在关于 Riesz-Kakutani 表示定理的附录中, 本书说明了如何在测度论中应用泛函分析的工具. 另一个附录总结了 Laurent Schwartz 的广义函数理论的基本内容.

本书中的许多应用都是关于偏微分方程问题的. 在这里, 熟悉一点 Laplace 方程和波动方程理论将会有所帮助, 对这些内容了解不多的读者也能够从这些应用中学到一些基本知识.

像大多数数学家一样, 我也不是历史学家. 然而在某些章中, 我还是给出了一些历史注记, 主要是在我有第一手资料时, 或者涉及 1930∼1940 年欧洲恐怖时期许多泛函分析鼻祖的悲惨命运的地方.

我要感谢许许多多的人. 从我的老师 Friedrichs 那里, 我学习了泛函分析的基础以及如何应用它们. 后来, 我的观点受到 Tosio Kato 工作的影响, 他应用泛函分析这一有力的工具解决了许多问题. 还有与 Ralph Phillips 的长期而又愉快的合作给出了泛函分析中一些不寻常的应用. 

从 Israel Gohberg 那里, 我学到了许多东西,特别是 Toeplitz 算子的指标理论; 从 Bill Johnson 和 Bob Phelps 那里又分别学到了Banach 空间的几何知识和 Choquet 定理. 感谢 Reuben Hersh 和 Louise Raphael,他们对涉及广义函数的附录提出了意见; 感谢 Jerry Goldstein 对半群和散射理论的内容提出的中肯建议. 我对上述所有人士以及 Gabor Francsics 表示衷心的感谢.

Jerry Berkowitz 和我在柯朗数学研究所轮流讲授泛函分析课程. 如果他还活着并能批阅本书的手稿, 这本书将会更加完善.

感谢 Jeffff Rosenbluth 和 Paul Chernoffff 仔细阅读了本书前面的一些章节; 感谢Keisha Grady 用 TEX 打印了手稿并做出了最后的修改和订正.

泛函分析课程讲义在柯朗所的研究生中非常受欢迎. 我希望本书保留了原讲义的精髓.

Peter D. Lax

2001 年 11 月于纽约

泛函分析》

作者:[美]PETER D. LAX

译者:侯成军 王利广

数学界泰斗Peter D. Lax亲授,纽约大学、普林斯顿大学等名校教材

泛函分析的经典百科全书,叙述简洁,内容精炼,直击要点,快速入门

突破纯理论框架,强调泛函分析在微分方程、量子力学等领域中的应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值