豆瓣9.5,它不是教材,却比市面上绝大多数教材讲得更清楚!

最近抽出几天时间,把《深度学习入门:基于Python的理论与实现》看完了。很多人习惯叫它“鱼书”,之前总是看到有人推荐这本书,说它适合入门、特别通俗,但我一直没翻!现在看完才发现,确实,它很适合像我这样,已经掌握了一些 Python 基础,但对深度学习一知半解、甚至有点怕的“门外汉”。

这本书是我朋友推荐我的。他知道我之前啃《西瓜书》和《花书》啃到脑壳疼,建议我先别硬上高阶理论,换本轻一点、能跑起来代码的试试看。

我一开始也半信半疑,觉得“简单的书会不会太水”,但读了之后发现,“鱼书”并不是“简化了就粗糙”,它是在不堆公式、不炫难度的前提下,把深度学习里那些容易让人卡壳的概念讲得特别顺,尤其是通过代码一步步推进的方式,看得懂也能跟得上,给了我一种“我也能学会”的信心。

全书只有 8 章,我花了四天时间,每天一点点推进,居然读得毫无压力。


 这本书到底哪里打动了我?

1

理论不重,细节不少,代码能跑

这本书不是一股脑儿的堆公式,而是先告诉你“这玩意儿是干啥的”,再讲“它是怎么实现的”,最后“你也来试试”。以“手写数字识别”这个项目为主线,一步步引出神经网络中最常见的结构和操作,比如感知机、激活函数、误差反向传播、权重初始化等。通过逐步讲解新的技术,并不断更新迭代程序。

最开始我只是照着读代码,没怎么亲手去写。但终于,在第 4、5 章的时候,迎来了自己动手的时候。 

这两章的程序都是两层结构的网络,我尝试改成三层、四层,或是更换激活函数、调整各层的神经元数量,第 5 章没有图形显示我还自己给加上了。

通过这些简单的修改,我不仅学会了如何使用 numpy 和 matplotlib,也收获了不少乐趣。(特别是第 3 章用 matplotlib 成功显示 MNIST 数据时,非常开心——视觉相关的内容真的很让人感动。)

作者特意留下了一些可以手动改动、添加内容的“余地”。

我也终于理解了,所谓学习,就是观察梯度,调整参数以减少损失;从一个广阔的初始空间出发,通过训练找到合适的参数。

虽然书中不可能涵盖所有找到参数的方法,但它所讲的内容已经非常清晰,让我终于“看见”了神经网络。

这种“写出来就能看到结果”的学习方式,比单纯记公式强太多了。就好像你在搭积木,而不是在死背定理。

2

不怕数学,但也不硬塞数学

我数学不算好,尤其对矩阵运算、偏导什么的容易一脸懵。但“鱼书”并没有逼着我去死抠推导,而是用直观的方式解释核心概念。比如讲 ReLU 的时候,不讲极限和收敛,直接说:“它让神经网络在 0 以下的区域不响应,这有助于解决梯度消失的问题。”我当时脑袋一拍,秒懂。

对于“Xavier 初始化”这种,作者也只是告诉你“这么初始化效果更稳定”,并给出参考论文,而不是强行推公式,如果你感兴趣可以自己去补充学习。它让你觉得数学是工具,不是门槛。

3

真正用得上的例子 

这本书在第 6 章还讲了权值衰减、Dropout 等正则化方法,并进行实现。最后将对近年来众多研究中使用的 Batch Normalization 方法进行简单的介绍。 我实际试了一下,确实能看到过拟合减轻,准确率上升。这种“边学边试”的体验,成就感满满,真正把理论学以致用。

另外,第 7 章讲卷积神经网络(CNN),虽然篇幅不长,但结合前面内容阅读完全没有压力。我甚至照着它的逻辑,用 PyTorch 重写了一遍自己的 CNN,作为作业项目交了上去——别说,分还挺高的。

4

给你一个“AI工程思维”的雏形

这本书不只是教你怎么搭模型,更潜移默化地教你一种思维方式——比如如何看待模型效果、怎样调试参数、什么时候该简化模型、什么时候又该使用更复杂的结构。这种“不是为了考试,而是为了做事”的视角,是我从其他教材里很少感受到的。


“鱼书”并不是某种终极教程,它没有把每个知识点都讲到极致,但它就像一位耐心的朋友,用简洁的语言、好理解的例子、可运行的代码,带你真正跨过了深度学习的门槛。

读完它,你会对神经网络的整体结构有个清晰认识,也能跑出一个简单的模型,这种“搭得起来、跑得动”的实感,是任何入门者最需要的鼓励。

对我来说,《深度学习入门》是一次非常舒服的学习体验。它不仅让我弄懂了过去总觉得“好遥远”的 AI 技术,也让我发现,原来我也可以写一个能识别手写数字的小模型,原来我也可以继续学下去。

如果你也对 AI 感兴趣,想找一本不劝退、能起步的好书,这本“鱼书”值得你安静读完。👇

图片

《深度学习入门:基于Python的理论与实现》

斋藤康毅 | 著

陆宇杰 | 译

豆瓣评分 9.5,本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用 Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。

作译者简介

斋藤康毅(作者):东京工业大学毕业,并完成东京大学研究生院课程。现从事计算机视觉与机器学习相关的研究和开发工作。是Introducing Python、Python in Practice、The Elements of Computing Systems、Building Machine Learning Systems with Python 的日文版译者。

陆宇杰(译者):众安科技 NLP 算法工程师。主要研究方向为自然语言处理及其应用,对图像识别、机器学习、深度学习等领域有密切关注。Python爱好者。

目录概览

第1章 Python入门  1

1.1 Python是什么  1

1.2 Python的安装  2

1.3 Python解释器  4

1.4 Python脚本文件  9

1.5 NumPy  11

1.6 Matplotlib  16

1.7 小结  19

第2章 感知机  21

2.1 感知机是什么  21

2.2 简单逻辑电路  23

2.3 感知机的实现  25

2.4 感知机的局限性  28

2.5 多层感知机  31

2.6 从与非门到计算机  35

2.7 小结  36

第3章 神经网络 

3.1 从感知机到神经网络  37

3.2 激活函数  42

3.3 多维数组的运算  50

3.4 3层神经网络的实现  56

3.5 输出层的设计  63

3.6 手写数字识别  69

3.7 小结  79

第4章 神经网络的学习  81

4.1 从数据中学习  81

4.2 损失函数  85

4.3 数值微分  94

4.4 梯度  100

4.5 学习算法的实现  109

4.6 小结  118

第5章 误差反向传播法  121

5.1 计算图  121

5.2 链式法则  126

5.3 反向传播  130

5.4 简单层的实现  135

5.5 激活函数层的实现  139

5.6 Affine/Softmax层的实现  144

5.7 误差反向传播法的实现  154

5.8 小结  161

第6章 与学习相关的技巧  163

6.1 参数的更新  163

6.2 权重的初始值  176

6.3 Batch Normalization  184

6.4 正则化  188

6.5 超参数的验证  195

6.6 小结  200

第7章 卷积神经网络  201

7.1 整体结构  201

7.2 卷积层  202

7.3 池化层  214

7.4 卷积层和池化层的实现  216

7.5 CNN的实现  224

7.6 CNN的可视化  228

7.7 具有代表性的CNN  231

7.8 小结  233

第8章 深度学习  235

8.1 加深网络  235

8.2 深度学习的小历史  242

8.3 深度学习的高速化  248

8.4 深度学习的应用案例  253

8.5 深度学习的未来  258

8.6 小结  264

“鱼书”同系列其他图书

图片

《深度学习入门2:自制框架》

[日]斋藤康毅 | 著

郑明智 | 译

豆瓣评分 9.6,深度学习鱼书姊妹篇,这套书做到了真正意义上的“入门”!书中没有使用内容不明的黑盒,而是从我们能理解的最基础的知识出发,一步一步地实现最先进的深度学习技术。

图片

《深度学习进阶:自然语言处理》

[日]斋藤康毅 | 著

陆宇杰 | 译

豆瓣评分 9.7 ,“鱼书”系列第 3 部,带你快速直达自然语言处理领域!本书内容精炼,聚焦深度学习视角下的自然语言处理,延续前作的行文风格,采用通俗的语言和大量直观的示意图详细讲解,帮助读者加深对深度学习技术的理解,轻松入门自然语言处理。

图片

《深度学习入门4:强化学习》

斋藤康毅 | 著

郑明智 | 译

豆瓣评分 9.5,深受读者喜爱的“鱼书”系列第四弹,深度学习入门经典,从零开始掌握强化学习。沿袭“鱼书”系列风格,提供实际代码,边实践边学习,无须依赖外部库,从零开始实现支撑强化学习的基础技术。

一次性 get 全套👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值