数据结构-红黑树(RBTree)

红黑树是一棵二叉搜索树,它在每个节点上增加了一个存储位来表示节点的颜色,可以是Red或Black。
通过对任何一条从根到叶子简单 路径上的颜色来约束,红黑树保证最长路径不超过最短路径的两倍,因而近似于平衡。

红黑树是满足下面红黑性质的二叉搜索树
1. 每个节点,不是红色就是黑色的
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个子节点是黑色的
4. 对每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。


插入的几种情况
ps:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
1.第一种情况 cur为红,p为红,g为黑,u存在且为红
则将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

2.第二种情况 cur为红,p为红,g为黑,u不存在/u为黑
p为g的左孩子,cur为p的左孩子,则进行右单旋转;
相反,p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色--p变黑,g变红


3.第三种情况
cur为红,p为红,g为黑,u不存在/u为黑
p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;
相反,p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
则转换成了情况2


4.第四种情况
   为空树或者只有一个根节点


主要代码:
#pragma once


enum Color
{
	RED,
	BLACK
};

template <typename K, typename V>
struct RBTreeNode
{
	K _key;
	V _value;

	Color _col;

	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	RBTreeNode(const K& key, const V& value)
		:_key(key)
		, _value(value)
		, _left(NULL)
		, _right(NULL)
		, _parent(NULL)
		, _col(RED)
	{}
};


template<typename K, typename V>
class RBTree
{
	typedef RBTreeNode<K,V> Node;

public:

	RBTree()
		:_root(NULL)
	{}

	pair<Node* ,bool> Insert(const K& key, const V& value)
	{
		if (_root == NULL)
		{
			_root = new Node(key, value);
			_root->_col = BLACK;
			return make_pair(_root,true);
		}

		Node* cur = _root;
		Node* parent = NULL;
		while (cur)
		{
			if (key < cur->_key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (key>cur->_key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return make_pair(cur, false);
			}
		}

		cur = new Node(key, value);
		if (parent->_key < key)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}  //到这块表示插入完成,然后进行调整

		Node* newcur = cur;
		while (parent && parent->_col == RED)
		{
			Node* grandparent = parent->_parent;

			if (grandparent->_left == parent)
			{
				Node* uncle = grandparent->_right;
				//1.
				if (uncle && uncle->_col == RED)
				{
					uncle->_col = parent->_col = BLACK;
					grandparent->_col = RED;

					cur = grandparent;
					parent = cur->_parent;
				}
				else // 2,3  (2为单旋,3为双旋)
				{
					if (cur == parent->_left)
					{
						//右单旋
						RotateR(grandparent);
					}
					else
					{
						//左右双旋
						RotateLR(grandparent);
						swap(parent, cur);
					}
					parent->_col = BLACK;
					grandparent->_col = RED;
					break;
				}
			}
			else
			{
				Node* uncle = grandparent->_left;

				if (uncle && uncle->_col == RED)
				{
					uncle->_col = parent->_col = BLACK;
					grandparent->_col = RED;

					cur = grandparent;
					parent = cur->_parent;
				}
				else // 2,3  (2为单旋,3为双旋)
				{
					if (cur == parent->_right)
					{
						//右单旋
						RotateL(grandparent);
					}
					else
					{
						//左右双旋
						RotateRL(grandparent);
						swap(parent, cur);
					}
					parent->_col = BLACK;
					grandparent->_col = RED;
					break;
				}
			}
		}


		_root->_col = BLACK;
		return make_pair(newcur, true);
	}


	V& operator[](const K& key)
	{
		pair<Node*, bool> ret;

		ret = Insert(key,V());

		return ret.first->_value;
	}

	bool IsRBTree()
	{
		if (_root && _root->_col == RED)
			return false;

		size_t k = 0;
		size_t num = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
				++k;
			cur = cur->_left;
		}

		return CheckColor(_root) && CheckBlackNum(_root, k, num);
	}

protected:

	bool CheckColor(Node* root)
	{
		if (root == NULL)
			return true;

		if (root->_col == RED && root->_parent->_col == RED)
			return false;

		return CheckColor(root->_left) && CheckColor(root->_right);
	}

	bool CheckBlackNum(Node* root, const size_t k, size_t num)
	{
		if (root == NULL)
		{
			return k == num;
		}

		if (root->_col == BLACK)
			num++;

		return CheckBlackNum(root->_left, k, num) && CheckBlackNum(root->_right, k, num);
	}

	void RotateL(Node* grandparent)  //左单旋
	{
		Node* subR = grandparent->_right;
		Node* subRL = subR->_left;

		grandparent->_right = subRL;
		if (subRL)
			subRL->_parent = grandparent;

		subR->_left = grandparent;

		Node* ppNode = grandparent->_parent;
		grandparent->_parent = subR;

		subR->_parent = ppNode;
		if (ppNode == NULL)
		{
			_root = subR;
		}
		else
		{
			if (ppNode->_left == grandparent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
		}
	}

	void RotateR(Node* grandparent)  //右单旋
	{
		Node* subL = grandparent->_left;
		Node* subLR = subL->_right;

		grandparent->_left = subLR;
		if (subLR)
			subLR->_parent = grandparent;

		subL->_right = grandparent;

		Node* ppNode = grandparent->_parent;
		grandparent->_parent = subL;

		subL->_parent = ppNode;
		if (ppNode == NULL)
		{
			_root = subL;
		}
		else
		{
			if (ppNode->_left == grandparent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
		}
	}

	void RotateRL(Node* grandparent)
	{
		RotateR(grandparent->_right);
		RotateL(grandparent);
	}

	void RotateLR(Node* grandparent)
	{
		RotateL(grandparent->_left);
		RotateR(grandparent);
	}
private:
	Node* _root;
};





红黑树(Red-Black Tree)是一种自平衡的二叉查找,具有良好的平衡性质。 红黑树在每个节点上增加了一个额外的属性来存储节点的颜色,可以是色或黑色。红黑树必须满足以下五个性质: 1. 每个节点都有一个颜色,要么色,要么黑色。 2. 根节点是黑色的。 3. 所有叶子节点(NIL节点)都是黑色的。 4. 如果一个节点是色的,则它的两个子节点都是黑色的。 5. 对于每个节点,从该节点到其所有后代叶子节点的简单路径上,均包含相同数量的黑色节点。 这些性质保证了红黑树的平衡性,并且使得最长路径不超过最短路径的两倍。 红黑树的基本操作包括插入、删除和查找。插入操作通过调整节点颜色以及旋转来保持的平衡;删除操作通过调整节点颜色以及旋转来保持的平衡,并且在删除节点后需要考虑如何保持红黑树的性质。查找操作沿着进行比较,最终找到目标节点或者确定目标节点不存在于中。 红黑树的时间复杂度为O(log n),其中n为中节点的个数。因此,红黑树在需要频繁地插入、删除和查找元素的情况下,能够保持较好的性能。 红黑树广泛应用于操作系统中的进程调度、文件系统的数据存储等领域,在STL中也有着重要的应用。它是一种非常重要且高效的数据结构,在算法和数据结构领域具有重要的研究价值和应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值