Pandas中数据类型的理解

 Series

  • 是带标签的一维数组
  • 它由一组数据,以及一个与之相关的数据标签,即索引组成
  • 一组数据,可以是不同的数据类型
  • 可存储整数、浮点数、字符串、Python 对象等类型的数据
  • 轴标签统称为索引
  • 字典(比较好理解)

DataFrame

  • 一组Series,增加了cloumns
  • 第一列 称为index(索引)第一行称为columns(列名),中间为数据体
  • 通过python中的字典+series是最容易创建DataFrame的方式,比如:
    data={
        'sate':['a','b','c','d','e'],
        'year':[2000,2001,2002,2003,2004],
        'pop':[1.5,1.7,3.6,2.4,2.9]
    }
    df = pd.DataFrom(data)
  • 返回多个列 df[['a','b']],这就理解为了什么是两重[],type(df[['a','b']])可以查看返回类型
  • DataFrame 查询结果为一行或者一列,一维数据, 则为一个series对象
  • 查询结果如果为多行多列,是一个区块,二维的,仍然是一个DataFrame对象
  • 每个行或者是每个列都是一个series,一维数据
  • df常用的方法有
    df.loc[1] 查询一行
    df.loc[1:3] 查询多行
    df.shape 查看行列数
    df.columns 查看列名
    df.index   查看索引
    df.dtypes 查看数据类型

pandas

  • 读取一个非CSV的格式化文本,比如:
    fake    1    2012/07
    luck    87    2018/01
    just    32    2015/11
    存为 /test.txt
    p = pd.read_csv(
        "/test.txt",
        sep = "\t",
        header=None,
        names=['what','value','date']
    )
  • 生成一个系列
    In [3]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
  • 由字典生成一个PD矩阵(也就是一行一行的生成)
    pd.DataFrame.from_dict(dict([('A', [1, 2, 3]), ('B', [4, 5, 6])]),orient='index', columns=['one', 'two', 'three'])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值