时序数据特征提取:用 pandas 进行上采样、下采样

# 对温度做分段常数逼近处理,下采样
def constant_appro_low(df_data_by_date_tem):
    df_data_by_date_tem = df_data_by_date_tem.reset_index(drop=True)
    df_appro = pd.DataFrame()
    date_index = pd.date_range(end = '01/01/2019', periods=len(df_data_by_date_tem), freq='D')
    temperature = 'Temperature'
    date_ymd = 'date_ymd'
    df_appro[temperature] = df_data_by_date_tem[temperature]
    df_appro.index = date_index
    # 下采样,取均值
    df_appro_low = pd.DataFrame()
    # 一个小时聚合一次常值, 这里通过 6 个数值进行取一次均值,例如:[0, 5] ,[6, 11] , ... 取均值
    df_appro_low[temperature] = df_appro[temperature].resample(rule='6D').mean()  
    #date_list = df_data_by_date_tem.loc[:len(df_appro_low)-1][date_ymd]
    #df_appro_low[date_ymd] = list(date_list)
    # 差分,做一阶差分
    df_appro_diff = pd.DataFrame()
    df_appro_diff[temperature] = df_appro_low.loc[:][temperature].diff(1) # 1 阶差分
    df_appro_diff[date_ymd] = list(df_data_by_date_tem.loc[:len(df_appro_diff)-1][date_ymd])
    df_appro_diff = df_appro_diff.dropna()
    df_appro_diff = df_appro_diff.reset_index(drop=True)
    df_appro_diff[temperature] = df_appro_diff[temperature].apply(lambda x: round(x, 2))
    return df_appro_diff

以上内容可以参考:

上采样、下采样:https://mbd.baidu.com/newspage/data/landingsuper?context={"nid"%3A"news_9661997349921147196"}&n_type=1&p_from=3
差分处理:https://mbd.baidu.com/newspage/data/landingsuper?context={"nid"%3A"news_9532838616696390580"}&n_type=1&p_from=3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值