冲破冯诺伊曼瓶颈:探索存内计算与静态随机存储器(SRAM)性能因素

       引言——随着计算任务的日益复杂和庞大,现有的计算架构和存储技术也面临着诸多挑战。为了应对这一挑战,存内计算技术逐渐引起研究者们的关注。而静态随机存储器作为其重要组成部分,正成为突破传统计算瓶颈(冯·诺依曼架构)的关键技术之一。

一.冯诺伊曼瓶颈与存内技术

      近年来,随着人工智能(ArtificialIntelligent,AI)和5G通信技术等领域的迅猛发展,对数据量和计算量的需求呈现出膨胀式增长。在这种背景下,对低功耗的要求变得越来越严峻。然而目前,几乎所有世界领先的计算机系统仍然基于冯诺依曼架构开发。冯诺依曼架构的典型特征是存储单元和中央处理器之间的高度物理分离,导致了冯诺依曼瓶颈的存在——例如,深度神经网络模型ResNet50具有2.55*107个权重,每识别一张图像需要执行3.8*1010次乘加运算。

冯诺伊曼架构及冯诺伊曼瓶颈

ResNet50 残差网络

      内存墙的存在使得处理器无法充分发挥其计算能力,因为它经常处于等待数据的状态。为了解决这一问题,所以为了克服冯诺依曼瓶颈并满足对更优计算性能日益增长的需求,存内计算(Computing-In-Memory,CIM)技术成为了一种可能的解决方案。存内计算技术不仅无需频繁在存储单元和计算单元之间进行数据传输,还能够实现多横向或多纵向数据的计算。因此,存内计算技术有望缓解内存墙瓶颈问题,提高计算速度,并降低能耗成本。

存内技术整体架构

存内计算将计算操作移到内存数组中执行而不是将数据传输到独立的处理单元

二.存内计算的核心——静态随机存储器(Static Random Access Memory,SRAM)

      存内计算的核心思想是将计算操作移到内存数组中执行&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值