图论的介绍(1)

一.简介

图论 (Graph theory) 是数学的一个分支,图是图论的主要研究对象。 (Graph) 是由若干给定的顶点及连接两
顶点的边所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系。顶点用于代表事物,连接两顶点的边
则用于表示两个事物间具有这种关系。

二.概念

(Graph) 是一个二元组 𝐺 = (𝑉 (𝐺), 𝐸(𝐺))。其中 𝑉 (𝐺) 是非空集,称为 点集 (Vertex set) ,对于 𝑉
中的每个元 素,我们称其为顶点 (Vertex) 节点 (Node) ,简称 ;𝐸(𝐺) 为 𝑉 (𝐺) 各结点之间边的集合,称为 边集 (Edge set)
常用 𝐺 = (𝑉 , 𝐸) 表示图。
𝑉 , 𝐸 都是有限集合时,称 𝐺 有限图
𝑉 𝐸 是无限集合时,称 𝐺 无限图
图有多种,包括 无向图 (Undirected graph) 有向图 (Directed graph) 混合图 (Mixed graph)
若 𝐺 为无向图,则 𝐸 中的每个元素为一个无序二元组 (𝑢, 𝑣),称作 无向边 (Undirected edge) ,简称 (Edge) , 其中 𝑢, 𝑣 ∈ 𝑉 。设 𝑒 = (𝑢, 𝑣),则 𝑢 𝑣 称为 𝑒 端点 (Endpoint)
若 𝐺 为有向图,则 𝐸 中的每一个元素为一个有序二元组 (𝑢, 𝑣),有时也写作 𝑢 → 𝑣,称作 有向边 (Directed edge) (Arc),在不引起混淆的情况下也可以称作 (Edge) 。设 𝑒 = 𝑢 → 𝑣,则此时 𝑢 称为 𝑒 的 起点 (Tail),𝑣 称为 𝑒 终点 (Head) ,起点和终点也称为 𝑒 端点 (Endpoint) 。并称 𝑢 是 𝑣 的直接前驱,𝑣 是 𝑢 的直接后继。
为什么起点是 Tail,终点是 Head
边通常用箭头表示,而箭头是从“尾”指向“头”的。
𝐺 为混合图,则 𝐸 中既有向边,又有无向边。
𝐺 的每条边 𝑒 𝑘 = (𝑢 𝑘 , 𝑣 𝑘 ) 都被赋予一个数作为该边的 ,则称 𝐺 赋权图 。如果这些权都是正实数,就称 𝐺 为正权图 。 图 𝐺 的点数 |𝑉 (𝐺)| 也被称作图 𝐺 (Order)
形象地说,图是由若干点以及连接点与点的边构成的。
相邻
在无向图 𝐺 = (𝑉 , 𝐸) 中,若点 𝑣 是边 𝑒 的一个端点,则称 𝑣 和 𝑒 是关联的 (Incident) 相邻的 (Adjacent) 。对 于两顶点 𝑢 和 𝑣,若存在边 (𝑢, 𝑣),则称 𝑢 和 𝑣 是 相邻的 (Adjacent)
一个顶点 𝑣 ∈ 𝑉 邻域 (Neighborhood) 是所有与之相邻的顶点所构成的集合,记作 𝑁(𝑣)
一个点集 𝑆 的邻域是所有与 𝑆 中至少一个点相邻的点所构成的集合,记作 𝑁(𝑆) ,即: 𝑁(𝑆) =
⋃ 𝑣∈𝑆 𝑁(𝑣)
度数
与一个顶点 𝑣 关联的边的条数称作该顶点的 (Degree) ,记作 𝑑(𝑣) 。特别地,对于边 (𝑣, 𝑣) ,则每条这样的边要 对 𝑑(𝑣) 产生 2 的贡献。 对于无向简单图,有 𝑑(𝑣) = |𝑁(𝑣)|
握手定理(又称图论基本定理):对于任何无向图 𝐺 = (𝑉 , 𝐸) ,有 𝑣∈𝑉 𝑑(𝑣) = 2 |𝐸|
推论:在任意图中,度数为奇数的点必然有偶数个。
𝑑(𝑣) = 0 ,则称 𝑣 孤立点 (Isolated vertex)
𝑑(𝑣) = 1 ,则称 𝑣 叶节点 (Leaf vertex) / 悬挂点 (Pendant vertex)
2 ∣ 𝑑(𝑣) ,则称 𝑣 偶点 (Even vertex)
2 ∤ 𝑑(𝑣) ,则称 𝑣 奇点 (Odd vertex) 。图中奇点的个数是偶数。
𝑑(𝑣) = |𝑉 | − 1 ,则称 𝑣 支配点 (Universal vertex)
对一张图,所有节点的度数的最小值称为 𝐺 的 最小度 (Minimum degree),记作 𝛿(𝐺);最大值称为 最大度 (Maximum degree) ,记作 Δ(𝐺) 。即: 𝛿(𝐺) = min𝑣∈𝐺 𝑑(𝑣),Δ(𝐺) = max 𝑣∈𝐺 𝑑(𝑣)。
在有向图 𝐺 = (𝑉 , 𝐸) 中,以一个顶点 𝑣 为起点的边的条数称为该顶点的 出度 (Out-degree),记作
𝑑 + (𝑣) 。以一 个顶点 𝑣 为终点的边的条数称为该节点的 入度 (In-degree) ,记作 𝑑 (𝑣) 。显然 𝑑 + (𝑣) + 𝑑−(𝑣) = 𝑑(𝑣)。
对于任何有向图 𝐺 = (𝑉 , 𝐸) ,有: ∑ 𝑣∈𝑉 𝑑 + (𝑣) = ∑ 𝑣∈𝑉 𝑑 (𝑣) = |𝐸|
若对一张无向图 𝐺 = (𝑉 , 𝐸) ,每个顶点的度数都是一个固定的常数 𝑘 ,则称 𝐺 𝑘 - 正则图 ( 𝑘 -Regular Graph)
如果给定一个序列 a ,可以找到一个图 G ,以其为度数列,则称 a 可图化 的。
如果给定一个序列 a ,可以找到一个简单图 G ,以其为度数列,则称 a 可简单图化 的。
简单图
自环 (Loop) :对 𝐸 中的边 𝑒 = (𝑢, 𝑣) ,若 𝑢 = 𝑣 ,则 𝑒 被称作一个自环。
重边 (Multiple edge) :若 𝐸 中存在两个完全相同的元素(边) 𝑒 1 , 𝑒 2 ,则它们被称作(一组)重边。
简单图 (Simple graph) :若一个图中没有自环和重边,它被称为简单图。具有至少两个顶点的简单无向图中一 定存在度相同的结点。( 鸽巢原理 ) 如果一张图中有自环或重边,则称它为多重图 (Multigraph)
warning
在无向图中 (𝑢, 𝑣) (𝑣, 𝑢) 算一组重边,而在有向图中, 𝑢 → 𝑣 𝑣 → 𝑢 不为重边。
warning
在题目中,如果没有特殊说明,是可以存在自环和重边的,在做题时需特殊考虑。
路径
途径 (Walk) :途径是一个将若干个点连接起来的边的集合。形式化地说,途径 𝑤 是一个边的集合
{𝑒 1 , 𝑒 2 , … , 𝑒 𝑘 } , 这个边集需要满足条件:存在一个由点构成的序列 𝑣 0 , 𝑣 1 , … , 𝑣𝑘 满足 𝑒 𝑖 的两个端点分别为 𝑣𝑖−1 𝑣 𝑖 。这样的路径可以 简写为 𝑣 0 → 𝑣 1 → 𝑣 2 → ⋯ → 𝑣 𝑘 。通常来说,边的数量 𝑘 被称作这条途径的
长度 (如果边是带权的,长度通常指路径 上的边权之和,题目中也可能另有定义)。
(Trail) :对于一条途径 𝑤 ,若 𝑒 1 , 𝑒 2 , … , 𝑒 𝑘 两两互不相同,则称 𝑤 是一条迹。
路径 (Path) (又称 简单路径 (Simple path) ) :对于一条迹 𝑤 ,若其连接的点的序列中点两两不同,则称 𝑤 是一 条路径。
回路 (Circuit) :对于一个迹 𝑤 ,若 𝑣 0 = 𝑣 𝑘 ,则称 𝑤 是一个回路。
/ (Cycle) (又称 简单回路 / 简单环 (Simple circuit) ) :对于一个回路 𝑤 ,若 𝑣 0 = 𝑣 𝑘 是点序列中唯一重复出现 的点对,则称 𝑤 是一个环。
warning
关于路径的定义在不同地方可能有所不同,如,“路径”可能指本文中的“途径”,“环”可能指本文中的“回 路”。如果在题目中看到类似的词汇,且没有“简单路径”/ “非简单路径”(即本文中的“途径”)等特殊说明,最 好询问一下具体指什么。
子图
对一张图 𝐺 = (𝑉 , 𝐸),若存在另一张图 𝐻 = (𝑉 , 𝐸 ) 满足 𝑉 ⊆ 𝑉 𝐸 ⊆ 𝐸 ,则称 𝐻 𝐺 子图 (Subgraph)
若对 𝐻 ⊆ 𝐺,满足 ∀𝑢, 𝑣 ∈ 𝑉 ,只要 (𝑢, 𝑣) ∈ 𝐸 ,均有 (𝑢, 𝑣) ∈ 𝐸 ,则称 𝐻 𝐺 导出子图 / 诱导子图 (Induced subgraph)
容易发现,一个图的导出子图仅由子图的点集决定,因此点集为 𝑉 ( 𝑉 ⊆ 𝑉 ) 的导出子图称为 𝑉 导出的子图,记 作 𝐺 [𝑉 ]
𝐻 ⊆ 𝐺 满足 𝑉 = 𝑉 ,则称 𝐻 𝐺 生成子图 / 支撑子图 (Spanning subgraph)
显然, 𝐺 是自身的子图,支撑子图,导出子图;空图是 𝐺 的支撑子图。原图 𝐺 和空图都是 𝐺 的平凡子图。
如果一张无向图 𝐺 的某个生成子图 𝐹 𝑘 - 正则图,则称 𝐹 𝐺 的一个 𝑘 - 因子 ( 𝑘 -Factor)
如果有向图 𝐺 = (𝑉 , 𝐸) 的导出子图 𝐻 = 𝐺 [𝑉 ] 满足 ∀𝑣 ∈ 𝑉 , (𝑣, 𝑢) ∈ 𝐸 ,有 𝑢 ∈ 𝑉 ,则称 𝐻 𝐺 的一个 闭合 子图 (Closed subgraph)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值