图的一因子

<<<<<<<<<<<<<<<<<<<<<<<<<<< Tutte 一因子  >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Tutte 一因子定理:

对于任意点集 S ∈V( G ),满足 o( G - S ) ≤ | S |,则 G 存在一因子。( o代表分量中点数为奇数的分量个数 )


证明:

必要性:

很显然,若是 G 存在一因子,G - S 中的奇分量的个数必然要小于S的个数,不然 G - S 中的某个奇分量中的点得不到匹配。

充分性:

反证,假设 G 满足任意 S,o( G - S ) ≤ | S |,但是 G 不存在一因子。但是在 G 中添加一条边变成 G*,会导致 G* 中的奇分量个数减少或者不变,o( G* - S ) ≤ o( G - S ) ≤ | S |。然后将 G* 变成满足 Tutte 定理,但是无一因子的极大图( 即再添加一条边就能产生一因子 )。

只需要证明这时候 G* 确实存在一因子即可。构造特殊点集 S,满足其中的点的度为 n( G ) - 1。(可以为空集 )

情况1: G - S 是完全图的并。

G - S 中的偶团,必然存在一因子。由于 o( G - S ) ≤ | S |,奇团中的无法得到匹配的点能够与 S 中的点得到匹配,那么已经匹配的点为偶数个。

S 中剩下的点数肯定是偶数,由于其度都为 n( G ) - 1,能匹配,若是S中剩下的点数为奇数,那么 G 的点数则为奇数,对于奇数点的 G 不可能满足图特条件。

情况2: G - S含有非完全图分量。

那么 G - S 中必然存在点 x 和点 y 不相交,x 和 y 同时邻接与点 w,但是 G - S 中必然还存在一点 z 与 w 不相邻,否则 w 的度则为 n( G ) - 1,就在S中了。

设 M1 为 G + xy 得到的一因子,M2 为 G + wz 得到的一因子。F =  M1 Δ M2( Δ为对称差,图的异或 )。F必然是孤立点和偶环组成的图

( 偶环是因为同一个 G 的两个完美匹配的环合必然是偶环,且是不同完美匹配的边交错组成的 )。设 C 是包含 xy 不包含 wz 的环,那么可以有  C 中不含 M1 的边和 C 外的 M2 组成一因子。若是 C 中同时包含 xy 和 wz ,

由于环中的边是不同完美匹配的边交错组成的,可是 xy 间 wz 只有一边的距离,

那么xy 和 wz 应该实在一个M1或者M2 里面的,可是他们分别在 M1 和 M2 中,所以矛盾。



<<<<<<<<<<<<<<<<<<<<<<<< Edmonds 偶阶图一因子 >>>>>>>>>>>>>>>>>>>>>>>>

Edmonds 偶阶图一因子定理:

一个偶阶图存在一因子当且仅当对于 V( G ) 的任意子集 S 都存在 G - S 的因子临界分支数(factor-critical component)小于 S 的大小。即 fc( G - S ) ≤ | S |.


证明:

必要性:

因为每个因子临界分支都是奇分支,由 Tutte' 1-factor 可知其必要性。

充分性:

假设 G 不存在 1-factor,那么必然存在一个不为 ∅ 的子集 S,使得 o( G - S ) > | S |.

那么对于满足 o(G - S' ) ≤ | S' | , S0   S' V( G ) 的情况,选择其极大集合的S0,

下面要证明 G -S0中没有偶分支和 G - S0 中的每个分支都是因子临界分支(fc( G - S0 ) = o( G - S0 ))。

假设存在一个偶分支 C,选择 C 的任意一点 v,对每一个 T V( C - v ) 都有

|S0 | + 1 + | T | 

≥ o( G - (S0 ∪ { v } ∪ T ) ) 

= o( G -S0 ) - 1 + o( G - ( { v } ∪ T ) )

> |S0 | - 1 + o( ( C - v ) - T )

因此 o( ( C - v ) - T ) < | T | + 2 由 o( G - S ) + | S |  V( G ) mod 2 可得 o( ( C - v ) - T ) ≤ | T |,

所以 C - v 存在一因子,所以 C 因子临界,fc( G - S0 ) = o( G - S0 ) > | S0 |,与原本假设相矛盾。



<<<<<<<<<<<<<<<<<<<<<<<< Anderson 偶阶图一因子 >>>>>>>>>>>>>>>>>>>>>>>>>>>

Anderson 偶阶图一因子:

对于阶数为 n 的偶阶图 G ,若对于满足 | S | ≤ ( 3 / 4 ) * n 的任意点集 S 有性质 | NG ( S ) | ≥ ( 4 / 3 ) * | S |,则 G 有 1-factor。


证明:

若是 G 不存在 1-factor, 那么必然存在一个集合  S0 满足 o( G -S0 ) > | S0 |

case 1:S0 | ≥ n / 4

设 S = V( G ) -S0  ,则 | S | ≤ ( 3 / 4 ) * n ,则 | NG ( S ) | ≥ ( 4 / 3 ) * | S |,

则有 ( 4 / 3 ) * ( n - | S0 | ) ≤ | NG ( G -S0 ) | ≤ n - i( G -S0 ),

得 i( G - S0 ) ≤ ( 4 / 3 ) * | S0 | - ( 1 / 3 ) * n.

因为 n ≥ | S0 | + i( G -S0 ) + 3 * ( o( G - S0 ) - i( G - S0 ) ),(觉得资料上因果关系 thus 用的不太好)

所以 n > | S0 | + 3 * | S0 | - ( 8 / 3 ) * | S0 | + ( 2 / 3 ) * n.

得 | S0 | < ( 1 / 4 ) * n,矛盾。

case 2:| S0 | < ( 1 / 4 ) * n

设 S = V( G ) - S0  ,则 | S | > ( 3 / 4 ) * n,设 S' 为大小为 ( 3 / 4 ) * n 的 S 的子集。

| NG ( S' ) | ≥ ( 4 / 3 ) * | S' | = n,所以 V( G )  NG ( S ),所以 S 与 G 中的所有点邻接。

G - S0 中无孤立点,由偶图中 o( G - S0 )  | S0 | mod 2,得到 G - S0 中至少有 S0 + 2 个奇分量,

且每个分量至少有 3 个顶点,在这些分量重去掉一个分量,设剩下的分量的顶点的并为 h,

则 h ≥ 3 * | S0 | + 3,但是他们邻接的顶点至多为 h + | S0 | ≤ h + ( 1 / 3 ) * ( h - 3 ) < ( 4 / 3 ) * h,

矛盾。




  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值