前言
简单问题,写的不好,大佬见谅.
如有疏漏,恳请指正,小编垂首.
问题描述:
最大公约数的计算:
输入格式第一行
问题解析:
按照题意,使用辗转相除法:
实现代码:
辗转相除法
代码如下(示例一)://递归
#include<iostream>
using namespace std;
int result(int x, int y) {
//if (y > 0) {
// return result(y, x % y);
//}
//if (y == 0) {
// return x;
//}
//简化一下:
return y ? result(y, x % y) : x;
}
int main() {
int x;
int y;
cin >> x >> y;
cout << result(x, y) << endl;
return 0;
}
代码如下(示例二):循环
#include<iostream>
using namespace std;
int result(int x,int y) {
int t;
while (y>0)
{
t = x % y;
x = y;
y = t;
}
return x;
}
int main() {
int x;
int y;
cin >> x >> y;
cout << result(x, y) << endl;
return 0;
}
注意事项
辗转相除法(又叫欧几里德算法)的原理是:
两个数的最大公约数等于其中较小的数字和二者之间余数的最大公约数;
其他的算法
除了欧几里德算法,求最大公约数还有一些其他的算法:
更相减损法
代码如下(示例):
#include<iostream>
using namespace std;
int result(int x, int y) {
while (x != y) {
if (x > y) x -= y;
else y -= x;
}
return x;
}
int main() {
int x;
int y;
cin >> x >> y;
cout << result(x, y) << endl;
return 0;
}
注意事项
更相减损法:
可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。
stein算法
代码如下(示例):
#include<iostream>
using namespace std;
int result(int x, int y) {
if (x < y) { int t = x; x = y; y = t; }
if (y == 0) { return x; }
if ((x & 1) == 0 && (y & 1) == 0) {
return result(x >> 1, y >> 1) << 1;
}
else if ((x & 1) == 0 && (y & 1) != 0) {
return result(x >> 1, y);
}
else if ((x & 1) != 0 && (y & 1) == 0) {
return result(x, y >> 1);
}
else
return result(x - y, y);
}
int main() {
int x;
int y;
cin >> x >> y;
cout << result(x, y) << endl;
return 0;
}
算法原理
Stein算法只有整数的移位和加减法。下面就来说一下Stein算法的原理:
- 若a和b都是偶数,则记录下公约数2,然后都除2(即右移1位);
- 若其中一个数是偶数,则偶数除2,因为此时2不可能是这两个数的公约数了
- 若两个都是奇数,则a = |a-b|,b = min(a,b),因为若d是a和b的公约数,那么d也>是|a-b|和min(a,b)的公约数。
这里面可能就第三句话难理解一点,这里进行简单的证明:
不妨设奇数A>B,A和B的公约数为X,即A=jX,B=kX,其中j,k均为正整数且j>k。
A−B=(j−k)X
因为j,k均为整数,所以X也是A-B的公约数。 min(A,B)=B 所以A-B与min(A,B)公约数相同, 因为A,B都是奇数, 所以A-B必然是偶数,偶数又可以二除移位了。 ————————————————
版权声明:本文为CSDN博主「Holmofy」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Holmofy/article/details/76401074
测试案例:
总结
探索到了求最大公约数的新姿势,开心.