从xjtu-sy数据集中看轴承故障的发展趋势与基本特征

0.缘起 

我们先看最简单的外圈故障,因为轴承故障,考虑PHM过程,早期的振动信号是不明显的,所以我们必须要从数据中自行找到特征数据和特征阈值,不能依赖既有的,基于故障的振动标准,比如:

1.外圈故障1_1缺陷的渐进过程

这里合计有123组数据,sn=80接近故障出现时:

1.1 sn=80, 外圈频点1x处的谱线:9.75g

1.2 sn = 0,谱线整体峰值不超过1g

### 使用 Python 或 MATLAB 对 XJTU-SY 轴承数据集应用连续小波变换 (CWT) #### 数据预处理加载 在进行 CWT 处理之前,需先加载并理解 XJTU-SY 数据集的结构。该数据集中包含了多种工况下的振动信号,通常以时间序列形式存储。以下是加载和准备数据的一般方法: 对于 Python 用户,可以利用 `scipy` 和 `pywt` 库来完成这一过程;而对于 MATLAB 用户,则可以直接调用内置的小波工具箱。 --- #### 基于 Python 的实现方式 以下是一个完整的 Python 实现流程,用于对 XJTU-SY 数据集中的振动信号执行 CWT 变换: ```python import numpy as np import pywt import matplotlib.pyplot as plt # 加载振动信号(假设已读取为一维数组) vibration_signal = np.loadtxt('path_to_xjtu_sy_data.txt') # 替换路径到实际文件位置 # 定义采样频率和其他参数 fs = 12000 # 示例采样率,单位 Hz t = np.arange(len(vibration_signal)) / fs # 时间轴 # 执行连续小波变换 scales = np.arange(1, 128) # 小波尺度范围 coefficients, frequencies = pywt.cwt(vibration_signal, scales, 'morl', sampling_period=1/fs) # 绘制结果 plt.figure(figsize=(10, 6)) plt.imshow(np.abs(coefficients), extent=[min(t), max(t), min(frequencies), max(frequencies)], cmap='jet', aspect='auto', origin='lower') plt.colorbar(label="Magnitude") plt.title("Continuous Wavelet Transform of Vibration Signal", fontsize=14) plt.xlabel("Time [seconds]", fontsize=12) plt.ylabel("Frequency [Hz]", fontsize=12) plt.show() ``` 上述代码实现了以下几个功能: - **加载数据**:通过 `np.loadtxt()` 函数导入振动信号。 - **定义参数**:设置采样频率以及所需的时间间隔。 - **计算 CWT**:使用 Morlet 波基函数[^1] 计算系数矩阵及其对应的频域分布。 - **可视化结果**:绘制热图展示时频特性。 --- #### 基于 MATLAB 的实现方式 如果倾向于使用 MATLAB 工具链,则可通过如下脚本快速完成相同任务: ```matlab % 导入原始振动信号 load('path_to_xjtu_sy_data.mat'); % 修改为具体的数据文件名 vibrationSignal = data(:, 1); % 提取列向量作为输入信号 Fs = 12000; % 设置采样频率 % 配置连续小波变换选项 waveletName = 'morse'; % Morse 波形是一种常用的选择 frequenciesOfInterest = (0.1:0.1:Fs/2)*(Fs/(length(vibrationSignal)-1)); % 执行 cwt 并绘图 [cfs, f] = cwt(vibrationSignal, frequenciesOfInterest, waveletName); figure; surf((0:length(vibrationSignal)-1)/Fs, f, abs(cfs)); shading flat; xlabel('Time (sec)'); ylabel('Frequency (Hz)'); zlabel('|CWT|'); title('Continuous Wavelet Transform Magnitude'); colormap jet; view(-90, 90); colorbar; ``` 此段程序同样涵盖了从数据导入至最终图像呈现的所有必要环节,并采用了默认推荐的 Morse 波型 来适配大多数工程应用场景的需求。 --- #### 结果解释 无论是采用 Python 还是 MATLAB 方法得到的结果均表现为二维谱图形式,横坐标代表时间维度而纵坐标则对应不同的振荡频率分量强度变化情况。这种表现形式有助于直观识别潜在故障特征模式所在区域及时刻点位信息。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子正

thanks, bro...

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值