振动信号分析 - 复数坐标变换引发的问题

1.复数坐标变换的故障纠错 

>>> abs(0.95-0.89j)
1.3017680284904833
>>> 1.30/50*32768
851.9680000000001
>>> 851.96+32768
33619.96
>>> 33622
33622
>>> 33391
33391
>>> 0.95/50*32768+32768
33390.592
>>> -0.89/50*32768+32768
32184.7296
>>> abs(33390+32184j)
46375.66124595961
>>>

假定原始的复数是:

0.95-0.89j

又假定我们需要将其坐标转换为0点记作:32768,然后正值部分>32768,负值<32768的u16,满量程暂且定为65535 = 50(value)

针对这个坐标变换:

  1. 0.95_{value} = \frac{0.95}{50}*32768 + 32768 = 33391_{u16}
  2. -0.89_{value}=\frac{-0.89}{50}*32768+32768=32185_{u16}
  3. abs(0.95-0.89j)=\sqrt{0.95^{2}+0.89^{2}}=1.30_{value}
  4. 1.30_{value} = \frac{1.30}{50}*32768 + 32768 = 33620_{u16}
  5. abs(33391+32185j)=\sqrt{33391^{2}+32185^{2}}=46376_{u16}

你知道为啥4,5不等吗?因为此时的模的圆心变了。

正确的u16取模算式为:

abs(33391+32185j - (32768+32768j))+32768=abs(623-583j)+32768=\sqrt{623^{2}+583^{2}}+32768=33621_{u16}

非常annoy,对吧?所以计算时,尽量不要改变数值的量程和中心点,否则你得出的数值极易出错。

2.振动分析中要代入什么样的信号?

 我们知道,实信号的傅里叶变换,在正负频率轴是完全对称的。但是对于振动分析领域,我们一般会部署一对正交的振动传感器,此时,参与FFT运算的,到底应该是什么呢?

我们能否直接构建复信号:SampleValue_{horizon} + j*SampleValue_{vertical}参与运算?

这个问题不做解答,好像是不言而喻的。其实它并不是那么不言而喻,对吧?

然后针对这个疑问的关联的问题还有另外一些,比如:

  1. 负频率到底是什么意思?
  2. 一般的振动分析教材中,仅仅有频率轴的正半周,这是不是意味着参与运算的是实信号?
  3. 对于解析信号而言的FFT结果,如何进行振动分析?
  4. 解析信号的负半周,多出的额外一个维度,能提供什么额外的分析结论?
  5. 为啥振动分析教材,几乎从来不提解析信号的问题?
  6. (*)你知道如何生成全息频谱吗?
  7. 全息频谱的物理意义是什么?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子正

thanks, bro...

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值