1.复数坐标变换的故障纠错
>>> abs(0.95-0.89j)
1.3017680284904833
>>> 1.30/50*32768
851.9680000000001
>>> 851.96+32768
33619.96
>>> 33622
33622
>>> 33391
33391
>>> 0.95/50*32768+32768
33390.592
>>> -0.89/50*32768+32768
32184.7296
>>> abs(33390+32184j)
46375.66124595961
>>>
假定原始的复数是:
0.95-0.89j
又假定我们需要将其坐标转换为0点记作:32768,然后正值部分>32768,负值<32768的u16,满量程暂且定为65535 = 50(value)
针对这个坐标变换:
你知道为啥4,5不等吗?因为此时的模的圆心变了。
正确的u16取模算式为:
非常annoy,对吧?所以计算时,尽量不要改变数值的量程和中心点,否则你得出的数值极易出错。
2.振动分析中要代入什么样的信号?
我们知道,实信号的傅里叶变换,在正负频率轴是完全对称的。但是对于振动分析领域,我们一般会部署一对正交的振动传感器,此时,参与FFT运算的,到底应该是什么呢?
我们能否直接构建复信号:参与运算?
这个问题不做解答,好像是不言而喻的。其实它并不是那么不言而喻,对吧?
然后针对这个疑问的关联的问题还有另外一些,比如:
- 负频率到底是什么意思?
- 一般的振动分析教材中,仅仅有频率轴的正半周,这是不是意味着参与运算的是实信号?
- 对于解析信号而言的FFT结果,如何进行振动分析?
- 解析信号的负半周,多出的额外一个维度,能提供什么额外的分析结论?
- 为啥振动分析教材,几乎从来不提解析信号的问题?
- (*)你知道如何生成全息频谱吗?
- 全息频谱的物理意义是什么?