polynomial regression

在上一节所介绍的非线性回归分析,首先要求我们对回归方程的函数模型做出判断。虽然在一些特定的情况下我们可以比较容易地做到这一点,但是在许多实际问题上常常会令我们不知所措。根据高等数学知识我们知道,任何曲线可以近似地用多项式表示,所以在这种情况下我们可以用多项式进行逼近,即多项式回归分析。

    一、多项式回归方法

假设变量y与x的关系为p次多项式,且在xi处对y的随机误差  (i=1,2,…,n)服从正态分布N(0,),则

    令

xi1=xi, xi2=xi2,…,xip=xip

    则上述非线性的多项式模型就转化为多元线性模型,即

 

    这样我们就可以用前面介绍的多元线性回归分析的方法来解决上述问题了。其系数矩阵、结构矩阵、常数项矩阵分别为

   (2-4-11)

 

                 (2-4-12)

 

                       (2-4-13)

 

    回归方程系数的最小二乘估计为

                       (2-4-14)

需要说明的是,在多项式回归分析中,检验bj是否显著,实质上就是判断x的j次项xj对y是否有显著影响。

对于多元多项式回归问题,也可以化为多元线性回归问题来解决。例如,对于

       (2-4-15)

    令xi1=Zi1, xi2=Zi2, xi3=Zi12, xi4=Zi1Zi2, xi5=Zi22

    则(2-4-15)式转化为

    转化后就可以按照多元线性回归分析的方法解决了。

    下面我们通过一个实例来进一步说明多项式回归分析方法。

    

    一、应用举例

    例2-4-2  某种合金中的主要成分为元素A和B,试验发现这两种元素之和与合金膨胀系数之间有一定的数量关系,试根据表2-4-3给出的试验数据找出y与x之间的回归关系。

表2-4-3  例2-4-2试验数据

 首先画出散点图(图2-4-3)。从散点图可以看出,y与x的关系可以用一个二次多项式来描述:

i=1,2,3…,13

图2-4-3  例2-4-2的散点图

    令

xi1=xi,xi2=xi2,

    则

    现在我们就可以用本篇第二章介绍的方法求出   的最小二乘估计。由表2-4-3给出的数据,求出

    由(2-2-16)式

    由此可列出二元线性方程组

    将这个方程组写成矩阵形式,并通过初等变换求b1,b2和系数矩阵L的逆矩阵L-1:

    于是

    b1=-13.3854

    b2=0.16598

    b0=2.3323+13.3854 40-0.16598 1603.5=271.599

    因此

    下面对回归方程作显著性检验:

    由(2-2-43)式

S=

    由(2-2-42)式

S=

S=Lyy- S=0.2572

 将上述结果代入表2-2-2中制成方差分析表如下:

表2-4-4          方差分析表

 

    查F检验表,F0。01(2,10)=7.56, F>F0.01(2 ,10),说明回归方程是高度显著的。

    下面对回归系数作显著性检验

    由前面的计算结果可知:

    b1=-13.3854            b2=0.16598

    c11=51.125            c22=7.9916 10-3

    由(2-2-54)式

    由(2-2-53)式

    检验结果说明的x一次及二次项对y都有显著影响。

 

1
0
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于多项式回归的模糊C均值算法(PRFCM)是一种扩展的模糊C均值聚类算法,它结合了多项式回归模型和模糊聚类方法,用于处理非线性关系和模糊性质的数据。 PRFCM的工作流程如下: 1. 数据预处理:首先,对原始数据进行标准化处理,以确保所有特征具有相似的尺度。 2. 初始化隶属度矩阵:随机初始化每个数据点对于每个聚类中心的隶属度值,这些隶属度值表示数据点属于每个聚类的程度。 3. 计算聚类中心:根据隶属度矩阵,计算每个聚类中心的位置。聚类中心是通过加权平均计算得到的,权重是根据隶属度矩阵计算的。 4. 更新隶属度矩阵:根据当前的聚类中心,计算每个数据点对于每个聚类中心的新隶属度值。这里使用多项式回归模型来估计数据点与聚类中心之间的关系。 5. 重复步骤3和步骤4,直到达到收敛条件。一般情况下,可以设置最大迭代次数或者设定聚类中心的变化小于某个阈值作为收敛条件。 6. 输出聚类结果:根据最终的隶属度矩阵,确定每个数据点所属的聚类。 PRFCM的关键特点是引入了多项式回归模型来建立数据点与聚类中心之间的关系。多项式回归能够捕捉到数据中的非线性关系,从而提高了聚类的准确性。同时,通过隶属度矩阵的引入,PRFCM能够处理模糊性质的数据,允许数据点属于多个聚类,并给出对应的隶属度值。 PRFCM算法在许多实际应用中都具有良好的效果,特别是在数据具有非线性关系和模糊性质时。它不仅能够提供准确的聚类结果,还能给出数据点与聚类中心之间的关系程度,为进一步分析和决策提供了有价值的信息。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值