算法分析与设计作业2 Dijkstra算法与Floyd算法

问题

给定一定无负值圈的图G,顶点集为V,使用Dijkstra算法求出G中顶点n到顶点m的最短路径,使用Floyd算法求出多源的最短路径,具体的图如下

在这里插入图片描述

代码

Dijkstra算法(单源最短路径),所谓单源是在一个有向图中,从一个顶点出发,求该顶点至所有可到达顶点的最短路径问题。

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

typedef struct Node{//定义结点 
	int index;
	int value;
	struct Node* next;
}Node;

typedef struct Graph{//定义图 
	int vertex;
	int edge;
	Node con[100];
}Graph;

typedef struct Edge{//定义边集 
	int head;
	int rear;
	int value;
}Edge;

typedef struct DijkstraPoint{//定义迪杰斯特拉算法的point 
	int value;
	int path;
	int flag;
}DijkstraPoint;

Graph init(){
	Graph MyGraph;
	int v,e,head,rear,value;
	memset(MyGraph.con, 0, sizeof(Node) * 100);
	scanf("%d %d", &v, &e);//输入边和点的数量 
	MyGraph.edge = e;
	MyGraph.vertex = v;
	 
	for (int i = 0; i < v; i++)
		MyGraph.con[i].next = NULL;

	for (int i = 0; i < e; i++){
		scanf("%d %d %d",&head,&rear,&value);
		Node* tmp1 = (Node*)malloc(sizeof(Node));
		tmp1->index = rear;
		tmp1->value = value;
		tmp1->next = MyGraph.con[head].next;
		MyGraph.con[head].next = tmp1;
	}
	return MyGraph;
}

void Dijkstra(Graph G){
	DijkstraPoint dist[100];//创建dist数组用来存储第一个顶点到其余顶点的最短距离 
	int start;
	for (int i = 0; i < G.vertex; i++){
		dist[i].path=0;
		dist[i].value= 999999999;//视为无穷大  
		dist[i].flag = 0;
	}
	scanf("%d", &start);
	dist[start].value = 0;
	
	while (1)
	{
		int min =999999999;
		int Vmin = 0;
		for (int i = 0; i < G.vertex; i++)
		{
			if (dist[i].flag == 0 && dist[i].value < min)
			{
				min = dist[i].value;
				Vmin = i;
			}
		}
		if (min == 999999999)
			break;
		else
			dist[Vmin].flag = 1;
		for (Node* tmp = G.con[Vmin].next; tmp != NULL; tmp = tmp->next)
		{
			if(dist[tmp->index].flag == 0)
				if (dist[Vmin].value + tmp->value < dist[tmp->index].value)
				{
					dist[tmp->index].value = dist[Vmin].value + tmp->value;
					dist[tmp->index].path = Vmin;
				}
		}
	}
	for (int i=G.vertex-1;i>=0;i--)
	{
		if (i!=start)
		{
			printf(" %d到%d的最短路径:\n", start, i);
			int tmp = i;
			while (tmp != start)
			{
				printf("%d<-", tmp);
				tmp = dist[tmp].path;
			}
			printf("%d\n",start);
		}
	}
}

int main(){
	Graph G;
	G=init();
	Dijkstra(G);

Floyd算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或有向图或负权(无负权回路)的最短路径问题。

#include<stdio.h>  
#include<string.h> 

#define NUMS 12   
 
typedef struct{   
    	char vertex[NUMS];   
    	int edges[NUMS][NUMS];   
    	int n,e;   
}Graph;   
 
void Dispath(int A[][NUMS],int path[][NUMS],int n); 
 
void ReadGraph(Graph *G){   //从文件中读取,每次手打实在是麻烦
	int i,j;
	FILE * fp = fopen("floyd.txt","rw");
	G->n = NUMS;
	G->e = NUMS * NUMS; 
	for(i=0; i<NUMS; i++){
		for(j=0; j<NUMS; j++){
			fscanf(fp,"%d",&(G->edges[i][j]));
			printf("%d \t",G->edges[i][j]);			
		}
		printf("\n");
	}
}   
 
void Floyd(Graph G){
	int A[NUMS][NUMS],path[NUMS][NUMS];
	int i,j,k;
	for (i=0;i<G.n;i++){
		for (j=0;j<G.n;j++){
			A[i][j]=G.edges[i][j];
			path[i][j]=-1;
		}
	}
	for (k=0;k<G.n;k++){
		for (i=0;i<G.n;i++){
			for (j=0;j<G.n;j++){
				if (A[i][j]>A[i][k]+A[k][j]){
					A[i][j]=A[i][k]+A[k][j];
					path[i][j]=k;
				}
			}
		}
	}
	Dispath(A,path,G.n);
}
 
void Spath(int path[][NUMS],int i,int j){
	int k;
	k=path[i][j];
	if (k==-1){
		return;
	}
	Spath(path,i,k);
	printf("%d,",k + 1);
	Spath(path,k,j);
}
 
void Dispath(int A[][NUMS],int path[][NUMS],int n){
	int i,j;
	for (i=0;i<n;i++){
		for (j=0;j<n;j++){
			if (A[i][j]==999999999){
				if (i!=j){
					printf("从%d到%d没有路径\n",i+1,j+1);
				}
			}
			else{
				printf(" 从%d到%d => 最短路径长度为: %d , 路径经过:",i+1,j+1,A[i][j]);
				printf("%d,",i + 1);
				Spath(path,i,j);
				printf("%d\n",j + 1);
			}
		}
	}
}
 
int main(){
	Graph G;
	ReadGraph(&G);
	Floyd(G);
	return 0;
}

算法分析

Dijkstra:O(n^2)
Floyd:O(n^3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值