RNN梯度消失和爆炸的原因

  一个经典的RNN结构如下图所示:
在这里插入图片描述  假设我们的时间序列只有三段, S 0 S_0 S0为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下: S 1 = W x X 1 + W s S 0 + b 1 O 1 = W o S 1 + b 2 S_{1}=W_{x} X_{1}+W_{s} S_{0}+b_{1} O_{1}=W_{o} S_{1}+b_{2} S1=WxX1+WsS0+b1O1=WoS1+b2 S 2 = W x X 2 + W s S 1 + b 1 O 2 = W o S 2 + b 2 S_{2}=W_{x} X_{2}+W_{s} S_{1}+b_{1} O_{2}=W_{o} S_{2}+b_{2} S2=WxX2+WsS1+b1O2=WoS2+b2 S 3 = W x X 3 + W s S 2 + b 1 O 3 = W o S 3 + b 2 S_{3}=W_{x} X_{3}+W_{s} S_{2}+b_{1} O_{3}=W_{o} S_{3}+b_{2} S3=WxX3+WsS2+b1O3=WoS3+b2  假设在t=3时刻,损失函数为 L 3 = 1 2 ( Y 3 − O 3 ) 2 L_{3}=\frac{1}{2}\left(Y_{3}-O_{3}\right)^{2} L3=21(Y3O3)2。则对于一次训练任务的损失函数为 L = ∑ t = 0 T L t L=\sum_{t=0}^{T} L_{t} L=t=0TLt即每一时刻损失值的累加。使用随机梯度下降法训练RNN其实就是对 W x W_x Wx W s W_s Ws W o W_o Wo 以及 b 1 b_1 b1 b 2 b_2 b2求偏导,并不断调整它们以使 L L L尽可能达到最小的过程。现在假设我们我们的时间序列只有三段, t 1 t_1 t1 t 2 t_2 t2 t 3 t_3 t3。我们只对 t 3 t_3 t3时刻的 W x W_x Wx W s W_s Ws W o W_o Wo 求偏导(其他时刻类似): ∂ L 3 ∂ W 0 = ∂ L 3 ∂ O 3 ∂ O 3 ∂ W o \frac{\partial L_{3}}{\partial W_{0}}=\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial W_{o}} W0L3=O3L3WoO3 ∂ L 3 ∂ W x = ∂ L 3 ∂ O 3 ∂ O 3 ∂ S 3 ∂ S 3 ∂ W x + ∂ L 3 ∂ O 3 ∂ O 3 ∂ S 3 ∂ S 3 ∂ S 2 ∂ S 2 ∂ W x + ∂ L 3 ∂ O 3 ∂ O 3 ∂ S 3 ∂ S 3 ∂ S 2 ∂ S 2 ∂ S 1 ∂ S 1 ∂ W x \frac{\partial L_{3}}{\partial W_{x}}=\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial W_{x}}+\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial S_{2}} \frac{\partial S_{2}}{\partial W_{x}}+\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial S_{2}} \frac{\partial S_{2}}{\partial S_{1}} \frac{\partial S_{1}}{\partial W_{x}} WxL3=O3L3S3O3WxS3+O3L3S3O3S2S3WxS2+O3L3S3O3S2S3S1S2WxS1 ∂ L 3 ∂ W s = ∂ L 3 ∂ O 3 ∂ O 3 ∂ S 3 ∂ S 3 ∂ W s + ∂ L 3 ∂ O 3 ∂ O 3 ∂ S 3 ∂ S 3 ∂ S 2 ∂ S 2 ∂ W s + ∂ L 3 ∂ O 3 ∂ O 3 ∂ S 3 ∂ S 3 ∂ S 2 ∂ S 2 ∂ S 1 ∂ S 1 ∂ W s \frac{\partial L_{3}}{\partial W_{s}}=\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial W_{s}}+\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial S_{2}} \frac{\partial S_{2}}{\partial W_{s}}+\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial S_{2}} \frac{\partial S_{2}}{\partial S_{1}} \frac{\partial S_{1}}{\partial W_{s}} WsL3=O3L3S3O3WsS3+O3L3S3O3S2S3WsS2+O3L3S3O3S2S3S1S2WsS1
  可以看出对于 W o W_o Wo 求偏导并没有长期依赖,但是对于 W x W_x Wx W s W_s Ws求偏导,会随着时间序列产生长期依赖。因为 S t S_t St 随着时间序列向前传播,而 S t S_t St又是 W x W_x Wx W s W_s Ws的函数。
  根据上述求偏导的过程,我们可以得出任意时刻对 W x W_x Wx W s W_s Ws求偏导的公式: ∂ L t ∂ W x = ∑ k = 0 t ∂ L t ∂ O t ∂ O t ∂ S t ( ∏ j = k + 1 t ∂ S j ∂ S j − 1 ) ∂ S k ∂ W x \frac{\partial L_{t}}{\partial W_{x}}=\sum_{k=0}^{t} \frac{\partial L_{t}}{\partial O_{t}} \frac{\partial O_{t}}{\partial S_{t}}\left(\prod_{j=k+1}^{t} \frac{\partial S_{j}}{\partial S_{j-1}}\right) \frac{\partial S_{k}}{\partial W_{x}} WxLt=k=0tOtLtStOtj=k+1tSj1SjWxSk任意时刻对 W s W_s Ws 求偏导的公式同上。
  如果再加上激活函数: S j = tanh ⁡ ( W x X j + W s S j − 1 + b 1 ) S_{j}=\tanh \left(W_{x} X_{j}+W_{s} S_{j-1}+b_{1}\right) Sj=tanh(WxXj+WsSj1+b1)。其中 tanh ⁡ ′ = [ 0 , 1 ] \tanh ^{\prime}=[0,1] tanh=[0,1] f ( z ) = tanh ⁡ ( z ) f(z)=\tanh (z) f(z)=tanh(z) f ( z ) ′ = 1 − ( f ( z ) ) 2 f(z)^{\prime}=1-(f(z))^{2} f(z)=1(f(z))2激活函数tanh和它的导数图像如下:
在这里插入图片描述  由上图可以看出 tanh ⁡ ′ ≤ 1 \tanh ^{\prime} \leq 1 tanh1,对于训练过程大部分情况下tanh的导数是小于1的,因为很少情况下会出现 W x X j + W s S j − 1 + b 1 = 0 W_{x} X_{j}+W_{s} S_{j-1}+b_{1}=0 WxXj+WsSj1+b1=0,如果 W s W_s Ws也是一个大于0小于1的值,则当 t t t很大时 ∏ j = k + 1 t tanh ⁡ ′ W s \prod_{j=k+1}^{t} \tanh ^{\prime} W_{s} j=k+1ttanhWs会趋于0,和 0.0 1 50 0.01^{50} 0.0150趋近于0是一个概念,同理当 W s W_s Ws很大时, ∏ j = k + 1 t tanh ⁡ ′ W s \prod_{j=k+1}^{t} \tanh ^{\prime} W_{s} j=k+1ttanhWs会趋于无穷。这就是RNN中梯度消失和爆炸的原因。

  至于怎么避免这种现象,让我在看看就是 ∂ L t ∂ W x = ∑ k = 0 t ∂ L t ∂ O t ∂ O t ∂ S t ( ∏ j = k + 1 t ∂ S j ∂ S j − 1 ) ∂ S k ∂ W x \frac{\partial L_{t}}{\partial W_{x}}=\sum_{k=0}^{t} \frac{\partial L_{t}}{\partial O_{t}} \frac{\partial O_{t}}{\partial S_{t}}\left(\prod_{j=k+1}^{t} \frac{\partial S_{j}}{\partial S_{j-1}}\right) \frac{\partial S_{k}}{\partial W_{x}} WxLt=k=0tOtLtStOtj=k+1tSj1SjWxSk梯度消失和爆炸的根本原因就是 ∏ j = k + 1 t ∂ S j ∂ S j − 1 \prod_{j=k+1}^{t} \frac{\partial S_{j}}{\partial S_{j-1}} j=k+1tSj1Sj这一坨,要消除这种情况就需要把这一坨在求偏导的过程中去掉,至于怎么去掉,一种办法就是使 ∂ S j ∂ S j − 1 ≈ 1 或 者 ∂ S j ∂ S j − 1 ≈ 0 \frac{\partial S_{j}}{\partial S_{j-1}} \approx 1或者\frac{\partial S_{j}}{\partial S_{j-1}} \approx 0 Sj1Sj1Sj1Sj0其实这就是LSTM做的事情。

总结:

  梯度消失:一句话,RNN梯度消失是因为激活函数tanh函数的倒数在0到1之间,反向传播时更新前面时刻的参数时,当参数W初始化为小于1的数,则多个(tanh函数’ * W)相乘,将导致求得的偏导极小(小于1的数连乘),从而导致梯度消失。
  梯度爆炸:当参数初始化为足够大,使得tanh函数的导数乘以W大于1,则将导致偏导极大(大于1的数连乘),从而导致梯度爆炸。

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值