C++实现遥感图像2%线性拉伸

1.接口函数

cv::Mat ColorImageStretch(const cv::Mat img, const float ratio)
{
	//影像分RGB计算灰度直方图
	cv::Mat mimg = img.clone();
	cv::Mat bgr[3];
	split(mimg, bgr);
	std::vector<cv::Point2f> hb = IS_Histogram(bgr[0]);
	std::vector<cv::Point2f> hg = IS_Histogram(bgr[1]);
	std::vector<cv::Point2f> hr = IS_Histogram(bgr[2]);
	//统计直方图累计频率ratio值对应的灰度
	uint minb = IS_MinRatio(hb, ratio);
	uint ming = IS_MinRatio(hg, ratio);
	uint minr = IS_MinRatio(hr, ratio);
	uint maxb = IS_MaxRatio(hb, ratio);
	uint maxg = IS_MaxRatio(hg, ratio);
	uint maxr = IS_MaxRatio(hr, ratio);
	//开始拉伸工作
	cv::Mat b, g, r;
	b = IS_StretchDeal(bgr[0], minb, maxb);
	g = IS_StretchDeal(bgr[1], ming, maxg);
	r = IS_StretchDeal(bgr[2], minr, maxr);
	//合并拉伸结果
	cv::Mat newbgr;
	newbgr.create(img.rows, img.cols, CV_32FC3);
	cv::Mat nbgr[3] = { b, g, r };
	merge(nbgr, 3, newbgr);
	return newbgr;
}

2.子函数

std::vector<cv::Point2f> IS_Histogram(const cv::Mat img)
{
	cv::Mat mimg = img.clone();
	int rows = mimg.rows;
	int cols = mimg.cols;
	//统计每个灰度出现的次数
	std::vector<long int> hisnum(256);
	for (int i(0); i < rows; ++i)
	{
		for (int j(0); j < cols; ++j)
		{
			uint gv = mimg.at<uchar>(i, j);
			++hisnum[gv];
		}
	}
	//开始计算灰度频率
	long int pnum = rows * cols;
	std::vector<cv::Point2f> hisp;
	for (int i(0); i < hisnum.size(); ++i)
	{
		float p = (float)hisnum[i] / pnum;
		hisp.push_back(cv::Point2f(i, p));
	}
	return hisp;
}
uint IS_MinRatio(const std::vector<cv::Point2f> data, const float ratio)
{
	float minp(0);
	uint outnum(0);
	for (int i(0); i < data.size(); ++i)
	{
		minp += data[i].y;
		if (minp >= ratio)
		{
			outnum = i;
			break;
		}
	}
	return outnum;
}
uint IS_MaxRatio(const std::vector<cv::Point2f> data, const float ratio)
{
	float maxp(0);
	uint outnum(0);
	for (int i(data.size() - 1); i >= 0; --i)
	{
		maxp += data[i].y;
		if (maxp >= ratio)
		{
			outnum = i;
			break;
		}
	}
	return outnum;
}
cv::Mat IS_StretchDeal(const cv::Mat img, const uint minnum, const uint maxnum)
{
	cv::Mat mimg = img.clone();
	int rows = mimg.rows;
	int cols = mimg.cols;
	cv::Mat nimg = cv::Mat::zeros(rows, cols, CV_8U);
	//归一化参数
	float dertnum = maxnum - minnum;
	//开始处理
	for (int i(0); i < rows; ++i)
	{
		for (int j(0); j < cols; ++j)
		{
			uint a = mimg.at<uchar>(i, j);
			//小于ratio对应像素值取0
			if (a <= minnum)
				nimg.at<uchar>(i, j) = 0;
			//大于ratio值对应像素值取255
			else if (a >= maxnum)
				nimg.at<uchar>(i, j) = 255;
			//中间值拉伸到0-255
			else
				nimg.at<uchar>(i, j) = 255 * (mimg.at<uchar>(i, j) - minnum) / dertnum;
		}
	}
	return nimg;
}
  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉闫小亘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值