codeforces #221(div2)B. I.O.U.

B. I.O.U.
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Imagine that there is a group of three friends: A, B and С. A owes B 20 rubles and B owes C 20 rubles. The total sum of the debts is 40 rubles. You can see that the debts are not organized in a very optimal manner. Let's rearrange them like that: assume that A owes C 20 rubles and B doesn't owe anything to anybody. The debts still mean the same but the total sum of the debts now equals 20 rubles.

This task is a generalisation of a described example. Imagine that your group of friends has n people and you know the debts between the people. Optimize the given debts without changing their meaning. In other words, finally for each friend the difference between the total money he should give and the total money he should take must be the same. Print the minimum sum of all debts in the optimal rearrangement of the debts. See the notes to the test samples to better understand the problem.

Input

The first line contains two integers n and m (1 ≤ n ≤ 100; 0 ≤ m ≤ 104). The next m lines contain the debts. The i-th line contains three integers ai, bi, ci (1 ≤ ai, bi ≤ nai ≠ bi; 1 ≤ ci ≤ 100), which mean that person ai owes person bi ci rubles.

Assume that the people are numbered by integers from 1 to n.

It is guaranteed that the same pair of people occurs at most once in the input. The input doesn't simultaneously contain pair of people (x, y) and pair of people (y, x).

Output

Print a single integer — the minimum sum of debts in the optimal rearrangement.

Sample test(s)
Input
5 3
1 2 10
2 3 1
2 4 1
Output
10
Input
3 0
Output
0
Input
4 3
1 2 1
2 3 1
3 1 1
Output
0
Note

In the first sample, you can assume that person number 1 owes 8 rubles to person number 2, 1 ruble to person number 3 and 1 ruble to person number 4. He doesn't owe anybody else anything. In the end, the total debt equals 10.

In the second sample, there are no debts.

In the third sample, you can annul all the debts.

题目大意:就是求如果A欠B20块,B欠C20块,

第一种A方案 :A->B 20,A->C 20则这种方案一共需要资金的流动量为20+20,

第二种方案 : A->C 20,而B却没有资金流动,那么这种方案只需要20元。

这两种方案所要完成的目标就是一样的,但是第二种方案所需要的钱数少于第一种,因此,我们选择第二种,根据这样的原则

给定一个有n个人的欠钱关系,u v w 表示u欠v的钱数为w,求出最小的货币流通量。


思路:直接模拟就行了,首先G[]={0}, 如果u欠v的钱叔为w,则G[u]-=w,G[v]+=w;

最后将所有的G[]>0 的值相加就行了。

ps:我擦,这么简单的题目我在比赛的时候都没想出来,真不知道我到底怎么了,每天都在训练,但是感觉还是这么弱,我到底怎样提高啊。但是我绝对不会放弃的,我热爱它。

/*
    @author : liuwen
*/
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#include <cmath>
using namespace std;
const int maxn=200;
int G[maxn],n,m;
int main()
{
    //freopen("in.txt","r",stdin);
    while(cin>>n>>m){
        int u,v,w;
        memset(G,0,sizeof(G));
        while(m--){
            cin>>u>>v>>w;
            G[u]-=w;
            G[v]+=w;
        }
        int ans=0;
        for(int i=1;i<=n;i++){
            if(G[i]>0)  ans+=G[i];
        }
        cout<<ans<<endl;
    }
    return 0;
}


阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭