鲁哇客:超低功耗边缘计算人脸检测方案对比调研

本文对比了三种超低功耗边缘计算人脸检测方案:MCU+CNN(Maxim MAX78000)、FPGA(Lattice iCE40 UltraPlus)和多核MCU(GAP8)。每种方案详细介绍了芯片特性、优势,并强调了在低功耗和高效能之间的平衡。
摘要由CSDN通过智能技术生成

鲁哇客,持续关注超低功耗,在各种领域的发展。

前言

最近对AI(人工智能)的最常见领域:人脸检测,做了一个比较深入的市场调查研究,把调查结果记录如下,可以给有需求的朋友节约一点时间。有其它发现的朋友欢迎留言讨论。

人脸检测是人脸识别的前端,比人脸识别的运算要简单些,也可以更快的得到结果,往往用在需要超低功耗的场景。一般的,系统在识别到人脸后,再进行功耗比较高的人脸识别,识别人的身份后,最后进入全功耗的工作状态,以达到最高效的能耗效果。

方案对比

这里对比的,是最前端,对功耗要求最为苛刻的人脸检测方案。

低功耗边缘计算的方式大致有三种:MCU+CNN、FPGA和多核MCU。他们的平均功耗可以做到10mW以下,下面一一列举具有代表性芯片方案。

1.MCU+CNN

Maxim与Xailient联手打造的低功耗的IoT人脸检测方案:MAX78000。 MAX78000 AI MCU(带神经网络加速器)用于需要极端计算能力的人工智能 (AI) 应用。MAX78000支持神经网络,将高能效AI处理与超低功耗微控制器结合在一起。基于硬件的卷积神经网络 (CNN) 加速器使电池供电应用能够执行AI推理,同时仅消耗微焦耳能量,只需12ms即可检测并锁定视频、图像中的人脸。

芯片特性

  • 双核超低功耗微控制器
  1. Arm Cortex-M4处理器(采用FPU,频率高达100MHz)
  2. 512KB闪存和128KB SRAM
  3. 性能经过优化,具有16KB指令缓存
  4. 可选纠错码 (ECC-SEC-DED) ,用于SRAM
  5. <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值