力扣每日一题 --- 2746. 字符串连接删减字母

文章讨论了如何使用动态规划解决字符串拼接问题,通过记忆化搜索和状态转移,降低时间复杂度。通过定义f[i][j][k]表示前i次操作头为j尾为k的最小长度,通过判断words[i]的头尾与前一次操作的关系进行状态转移计算最终最小长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一题中题目核心点就是拼接,每次拼接有两种方式,如果是爆搜的话,那么时间复杂度会很高,但是我们注意到一个性质,就是我们第一次拼接完之后,第二次再拼接的话,其实是不是只需要知道头和尾的字符就行,不需要字符串是怎么样的,那么知道头和尾了,那么是不是我们现在就差前面一次拼接时的状态的字符串长度,那么只要前面的状态有了头和尾和当前字符串最小长度,那是不是我们就可以从上一个状态转移过来了,不太懂的话,可以先按爆搜思考,再用记忆化搜索,最后再用动态规划来考虑,我是直接爆搜后发现这个性质,然后就知道用记忆化搜索或者动态规划这里采用动态规划,定义f[i][j][k],代表前i次操作头为j尾为k的最小长度,那么转移的时候,我们就可以根据当前的words[i]来判断是否可以转移了,那么第i次操作之后,拼接之后主要分为两种情况

第一种情况:
1.1:words[i]的尾部和stri-1的头部相同,那么这种情况拼接之后的头部是words[i]的头部,stri-1的尾部,这个stri-1的尾部我们是不知道具体是哪个的,但是不会超过26个字符的,所以直接遍历尾部

f[i][top][k] = min(f[i][top][k],f[i - 1][tail][k] + len - 1);

1.2:words[i]的尾部和stri-1的头部不相同

f[i][top][k] = min(f[i][top][k

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乖的小肥羊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值