matplotlib中的imshow()绘图长宽比例失调,调整长宽比(备忘)

当两个坐标轴的维度相差较大的时候,采用plt.imshow(x) 会出现如下情况。

import matplotlib.pyplot as plt

plt.imshow(x,cmap='hot') #绘图
plt.colorbar() # 显示颜色标尺
plt.show() 

解决的办法是:plt.imshow(x,aspect='auto')

import matplotlib.pyplot as plt

plt.imshow(x,cmap='hot',aspect='auto') #绘图
plt.colorbar() # 显示颜色标尺
plt.show() 

### 解决 Matplotlib `imshow` 函数不显示像的问题 当遇到 Matplotlib 的 `imshow` 函数无法正常显示像的情况时,通常是因为缺少必要的绘图展示命令或是环境配置不当。具体措施如下: 对于 Python Shell IDLE 环境而言,由于其默认未开启交互模式,因此需要手动激活此功能以便能够实时查看绘制的结果[^1]。 而在 PyCharm 社区版中,除了确保调用了 `plt.show()` 方法外,还需确认 IDE 设置是否影响到了形窗口的弹出行为;如果发现没有名为 "Python Scientific" 的设置项,则不必担心,因为这并不是唯一途径[^4]。 另外,在其他开发环境下(比如标准命令行终端),只要简单地追加 `plt.show()` 即可解决问题[^5]。 值得注意的是,为了使像正确呈现,特别是从 OpenCV 加载的情况下,应当调整颜色通道顺序以匹配 Matplotlib 所期望的形式——即将 BGR 调整为 RGB[^2]。 最后,若希望获得更平滑的视觉效果,可以通过修改参数实现更高的渲染质量[^3]。 ```python import numpy as np import matplotlib.pyplot as plt from PIL import Image # 假设这是你要加载并处理的一张片路径 image_path = 'path_to_your_image_file' img = Image.open(image_path) # 将PIL.Image对象转化为numpy数组形式 np_img = np.array(img) # 如果是从OpenCV读入则需转换色彩空间 if isinstance(np_img, type(cv2.imread(''))): np_img = cv2.cvtColor(np_img,cv2.COLOR_BGR2RGB) plt.figure() plt.imshow(np_img) plt.axis('off') # 关闭坐标轴 plt.show() # 对于想要提高画质的需求者来说,可以尝试下面的方法之一: # 使用 interpolation 参数指定插值方式来增强清晰度 plt.imshow(np_img, interpolation='bicubic') plt.show() ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

txh3093

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值