暑期项目实训——08

本文介绍了使用随机森林算法进行股票趋势预测的过程,包括数据获取、特征选择、训练测试集划分、模型构建及预测第二天股价的步骤。
摘要由CSDN通过智能技术生成

股票趋势预测——随机森林算法(二)

今天的任务就是利用随机森林算法对股票趋势进行简单的预测。

1.提取预测股票的数据:

我是通过tushare接口来获取的数据

df = pro.daily(name='N科德', start_date='20210101', end_date='20210701')
df.set_index('trade_date', inplace=True)  #设置date列为索引,覆盖原来索引,这个时候索引还是 object 类型,就是字符串类型。
df.index = pd.DatetimeIndex(df.index)  #将object类型转化成 DateIndex 类型,pd.DatetimeIndex 是把某一列进行转换,同时把该列的数据设置为索引 index。
df = df.sort_index(ascending=True)  #将时间顺序升序
print(df)

2.选取特征变量和目标变量:

#2.提取特征变量和目标变量,用当天收盘后获取完整的数据为特征变量,下一天的涨跌情况为目标变量这样来训练分类决策树模型
df['close-open'] = (df['close']-df['open'])/df['open']
df['high-low'] = (df['high']-df['low'])/df['low']
df['pre_close'] = df['close'].shift(1)  #昨日收盘价 shift(1)是把数据向下移动1位
df['price_change'] = df['
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值