股票趋势预测——随机森林算法(二)
今天的任务就是利用随机森林算法对股票趋势进行简单的预测。
1.提取预测股票的数据:
我是通过tushare接口来获取的数据
df = pro.daily(name='N科德', start_date='20210101', end_date='20210701')
df.set_index('trade_date', inplace=True) #设置date列为索引,覆盖原来索引,这个时候索引还是 object 类型,就是字符串类型。
df.index = pd.DatetimeIndex(df.index) #将object类型转化成 DateIndex 类型,pd.DatetimeIndex 是把某一列进行转换,同时把该列的数据设置为索引 index。
df = df.sort_index(ascending=True) #将时间顺序升序
print(df)
2.选取特征变量和目标变量:
#2.提取特征变量和目标变量,用当天收盘后获取完整的数据为特征变量,下一天的涨跌情况为目标变量这样来训练分类决策树模型
df['close-open'] = (df['close']-df['open'])/df['open']
df['high-low'] = (df['high']-df['low'])/df['low']
df['pre_close'] = df['close'].shift(1) #昨日收盘价 shift(1)是把数据向下移动1位
df['price_change'] = df['