暑期项目实训——09

股票趋势预测——随机森林算法(三)

今天的主要目标是对之前的模型进行检测,检验模型的准确率。

6.预测属于每个分类的概率:

y_pred_proba = model.predict_proba(X_test)
b = pd.DataFrame(y_pred_proba, columns=['分类为-1的概率', '分类为1的概率'])
print(b)

我们可以看到每次分类的概率:

 

7.检测整体模型的预测准确率:

from sklearn.metrics import accuracy_score
score = accuracy_score(y_pred, y_test)
print('准确率: ' + str(round(score*100, 2)) + '%')

对N科德预测的准确率为:

 

之后的工作就是对该算法的完善。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值