股票趋势预测——随机森林算法(三)
今天的主要目标是对之前的模型进行检测,检验模型的准确率。
6.预测属于每个分类的概率:
y_pred_proba = model.predict_proba(X_test)
b = pd.DataFrame(y_pred_proba, columns=['分类为-1的概率', '分类为1的概率'])
print(b)
我们可以看到每次分类的概率:
7.检测整体模型的预测准确率:
from sklearn.metrics import accuracy_score
score = accuracy_score(y_pred, y_test)
print('准确率: ' + str(round(score*100, 2)) + '%')
对N科德预测的准确率为:
之后的工作就是对该算法的完善。