表达式的三种形式:
中缀表达式:运算符放在两个运算对象中间,如:(2+1)*3;
后缀表达式:不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行(不再考虑运算符的优先规则,如:2 1 + 3 *;
前缀表达式:同后缀表达式一样,不包含括号,运算符放在两个运算对象的前面,如:* + 2 1 3。
(2)表达式的计算:
由于后缀表达式中没有括号,不需判别优先级,计算严格从左向右进行,故计算一个后缀表达式要比计算机一个中缀表达式简单得多。
将中缀表达式转换为后缀表达式的算法思想:
·当读到数字直接送至输出队列中
·当读到运算符t时,
a.将栈中所有优先级高于或等于t的运算符弹出,送到输出队列中;
b.t进栈
·读到左括号时总是将它压入栈中
·读到右括号时,将靠近栈顶的第一个左括号上面的运算符全部依次弹出,送至输出队列后,再丢弃左括号。
运用后缀表达式进行计算的具体做法:
·建立一个栈S
·从左到右读后缀表达式,读到数字就将它转换为数值压入栈S中,读到运算符则从栈中依次弹出两个数分别到Y和X,然后以“X 运算符 Y”的形式计算机出结果,再压加栈S中
·如果后缀表达式未读完,就重复上面过程,最后输出栈顶的数值则为结束
中缀表达式:运算符放在两个运算对象中间,如:(2+1)*3;
后缀表达式:不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行(不再考虑运算符的优先规则,如:2 1 + 3 *;
前缀表达式:同后缀表达式一样,不包含括号,运算符放在两个运算对象的前面,如:* + 2 1 3。
(2)表达式的计算:
由于后缀表达式中没有括号,不需判别优先级,计算严格从左向右进行,故计算一个后缀表达式要比计算机一个中缀表达式简单得多。
将中缀表达式转换为后缀表达式的算法思想:
·当读到数字直接送至输出队列中
·当读到运算符t时,
a.将栈中所有优先级高于或等于t的运算符弹出,送到输出队列中;
b.t进栈
·读到左括号时总是将它压入栈中
·读到右括号时,将靠近栈顶的第一个左括号上面的运算符全部依次弹出,送至输出队列后,再丢弃左括号。
运用后缀表达式进行计算的具体做法:
·建立一个栈S
·从左到右读后缀表达式,读到数字就将它转换为数值压入栈S中,读到运算符则从栈中依次弹出两个数分别到Y和X,然后以“X 运算符 Y”的形式计算机出结果,再压加栈S中
·如果后缀表达式未读完,就重复上面过程,最后输出栈顶的数值则为结束
35,15,+,80,70,-,*,20,/ //后缀表达方式
(((35+15)*(80-70))/20)=25 //中缀表达方式
/,*,+,35,15,-,80,70, 20 //前缀表达方式
人的思维方式很容易固定~~!正如习惯拉10进制。就对2,3,4,8,16
等进制不知所措一样~~!
人们习惯的运算方式是中缀表达式。而碰到前缀,后缀方式。。迷茫
其实仅仅是一种表达式子的方式而已(不被你习惯的方式)
我这里教你一种也许你老师都没跟你讲的简单转换方式
一个中缀式到其他式子的转换方法~~
这里我给出一个中缀表达式~
a+b*c-(d+e)
第一步:按照运算符的优先级对所有的运算单位加括号~
式子变成拉:((a+(b*c))-(d+e))
第二步:转换前缀与后缀表达式
前缀:把运算符号移动到对应的括号前面
则变成拉:-( +(a *(bc)) +(de))
把括号去掉:-+a*bc+de 前缀式子出现
后缀:把运算符号移动到对应的括号后面
则变成拉:((a(bc)* )+ (de)+ )-
把括号去掉:abc*+de+- 后缀式子出现
发现没有,前缀式,后缀式是不需要用括号来进行优先级的确定的。
如果你习惯拉他的运算方法。计算的时候也就是从两个操作数的前面
或者后面找运算符。而不是中间找,那么也就直接可以口算拉
你不妨把你的式子做个中缀转换。~从我给出的例子。你应该很容易找出规律拉~
(((35+15)*(80-70))/20)=25 //中缀表达方式
/,*,+,35,15,-,80,70, 20 //前缀表达方式
人的思维方式很容易固定~~!正如习惯拉10进制。就对2,3,4,8,16
等进制不知所措一样~~!
人们习惯的运算方式是中缀表达式。而碰到前缀,后缀方式。。迷茫
其实仅仅是一种表达式子的方式而已(不被你习惯的方式)
我这里教你一种也许你老师都没跟你讲的简单转换方式
一个中缀式到其他式子的转换方法~~
这里我给出一个中缀表达式~
a+b*c-(d+e)
第一步:按照运算符的优先级对所有的运算单位加括号~
式子变成拉:((a+(b*c))-(d+e))
第二步:转换前缀与后缀表达式
前缀:把运算符号移动到对应的括号前面
则变成拉:-( +(a *(bc)) +(de))
把括号去掉:-+a*bc+de 前缀式子出现
后缀:把运算符号移动到对应的括号后面
则变成拉:((a(bc)* )+ (de)+ )-
把括号去掉:abc*+de+- 后缀式子出现
发现没有,前缀式,后缀式是不需要用括号来进行优先级的确定的。
如果你习惯拉他的运算方法。计算的时候也就是从两个操作数的前面
或者后面找运算符。而不是中间找,那么也就直接可以口算拉
你不妨把你的式子做个中缀转换。~从我给出的例子。你应该很容易找出规律拉~