MapReuce笔记二之MR任务在yarn容器中的资源管理

本文介绍了YARN在Hadoop 2.0中的角色,作为资源管理层,如何管理MapReduce任务的资源。内容包括YARN的组件:ResourceManager、NodeManager、ApplicationMaster和容器,以及MapReduce应用的生命周期,强调了数据本地性对于效率的重要性。
摘要由CSDN通过智能技术生成

Yarn是hadoop2.0之后引入的一个资源管理层,mapreduce也仅是yarn的一种应用模式,按照既定的协议从yarn中申请cpu,内存等资源。

Yarn由五部分组成,recouceManager(RM),nodeManager(NM),ApplicationMaster(AM),容器(container),客户端(client)。

    RM:负责集群资源的管理由调度器和应用管理器组成,调度器负责为集群中所有的应用分配资源。

    NM:负责本地节点资源管理。

    AM:应用的守护进程,负责与RM进行资源协商。应用提交后,RM的调度器和应用管理器协商后得到一个容器用以启动AM,AM启动后通过心跳机制与RM通信目的主要是为应用申请资源。

    容器:分配给应用资源的抽象形式。

    客户端:一个实例用来向RM提交应用。


MapReduce计算框架在运行时分为两部分,一部分称为MRAppMaster负责管理,其余的全是任务他们都运行在yarn容器中。Yarn容器在hadoop框架中负责资源管,分为ResourceManager和DataManager,ResourceManager在主节点上负责集群资源分配调度,DataManager在从节点上负责单节点的资源管理。

         我们通过Hadoopjar执行MapReduce架包( jar文件):

         1:首先将架包文件上传到hdfs中,然后再将地址告诉ResourceManager。

         2:ResourceManager从地址中拿到jar后会分析其代码,分析后发现这是一个MapReduce程序,然后从集群中的某一个DataManag

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值