1043·递归13(因式分解【深搜+剪枝 或 DP 】)

1043: 递归13(因式分解【深搜+剪枝 或 DP 】)

时间限制: 1 Sec 内存限制: 128 MB
题目描述

【题意】
分解一个整数n,格式如下:
n = a1a2a3a4…am
比如:
12=12
12=6
2
12=4
3
12=34
12=3
22
12=2
6
12=232
12=223
总共8种

【输入格式】
一行一个整数n(1 < n < = 2^31 )。
【输出格式】
输出分解的总数。
【样例输入】
12
【样例输出】
8

题解~~

对于一道题目完美的代码并不是凭空出现的,而是要经过一步步的探索/

第一想法都可能是暴力求解
像下面 直接枚举,搜索
然而注意到n(1 < n < = 2^31 )
n为2^31,,,
显然后面几个点过不了,但不失为一种方法,还是记录下来。

#include<cstdio>
#include<iostream>
using namespace std;
int ans;
void dfs(int n){
	ans++;//1*n也是可以的所以直接ans++
	for (int i=n-1;i>1;i--){
		if (n%i==0){//枚举因数可以则继续分解
			dfs(n/i);
		} 
	}
}
int main(){
	int n;
	scanf("%d",&n);
	ans=0;dfs(n);
	printf("%d",ans);
	return 0;
}

上述代码会超时27%做的时间。

当然不能放弃,看上述代码显然需要优化。

不如直接将因子存进一个数组来,这样会节省一些复杂度。

#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int a[11000],len;
void fz(int x){
	int t=int(sqrt(double(x+1)));//与素数类似,从根号x找起(注意取整)
	for (int i=2;i<=t;i++){
		if (x%i==0){//如果是x因子则
			a[++len]=i;
			if (x/i!=i)a[++len]=x/i;//如果x整除i不是i,则存另一个因子
		}
	}
}
int n,ans;
void dfs(int d){//搜索时直接搜索因子
	ans++;
	for (int i=1;i<=len;i++){
		if (n%(d*a[i])==0&&n!=d*a[i]){
			dfs(d*a[i]);
		}
	}
}
int main(){
	scanf("%d",&n);
	len=0;fz(n);
	ans=0;dfs(1);
	printf("%d\n",ans);
	return 0;
}

但是优化后还是发现超了9%
仔细观察发现还可以继续优化

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int a[11000],len;
void fz(int x){
	int t=int(sqrt(double(x+1)));
	for (int i=2;i<=t;i++){
		if (x%i==0){
			a[++len]=i;
			if (x/i!=i)a[++len]=x/i;
		}
	}
}
int n,ans;
void dfs(int d){
	ans++;
	for (int i=1;i<=len;i++){
		if (d*a[i]>n) break;//如果因子比n大则直接跳出
		if (n%(d*a[i])==0&&n!=d*a[i]){
			dfs(d*a[i]);
		}
	}
}
int main(){
	scanf("%d",&n);
	len=0;fz(n);
	sort(a+1,a+len+1);//加了一步排序
	ans=0;dfs(1);
	printf("%d\n",ans);
	return 0;
}

加了一个排序从而达到了剪枝的目的,成功AC~

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值