时间延迟嵌入定理(Time-Delay Embedding Theorem),也称为Takens嵌入定理,由荷兰数学家Floris Takens在1981年提出。这个定理在动力系统理论中非常重要,特别是在从实验数据重建动力系统的状态空间模型方面具有广泛应用。时间延迟嵌入定理为我们提供了一种方法,通过观测到的单一时间序列数据来重构整个动力系统的相空间,即便原系统的全部状态变量未知。
基本概念
在动力系统分析中,我们通常希望从系统的状态向量演化来理解系统行为。然而,在实际应用中,我们可能无法直接观察到全部的状态变量,而只能获取单一或有限几个变量的时间序列数据。
定理内容
Takens定理指出,如果我们有一个光滑的动态系统,并从中测量一个变量,那么通过将这个变量在不同时间点的值组成向量(通过时间延迟嵌入),就有可能在一个高维空间中重构出与原系统动力学等价的相空间。具体来说,这个过程是通过构造一个向量序列来实现的:
[ x ( t ) = [ x ( t ) , x ( t + τ ) , x ( t + 2 τ ) , … , x ( t + ( m − 1 ) τ ) ] ] [ \mathbf{x}(t) = \left[ x(t), x(t+\tau), x(t+2\tau), \dots, x(t+(m-1)\tau) \right] ] [x(t)=[x(t),x(t+τ),x(t