回归问题中的K折验证

本文深入探讨了在数据集较小的情况下,如何通过K折交叉验证提高模型评估的可靠性。介绍了K折交叉验证的基本原理,即将数据集划分为K个子集,轮流作为验证集,其余作为训练集,以获取更稳定的模型性能评估。通过代码实例展示了具体实施过程,包括如何划分数据、训练模型及评估验证分数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  回归问题中,为了调节网络参数(如训练轮数)的同时对网络进行评估,一般将数据集分为训练集和验证集。但有时由于数据集比较小,验证集会非常小。因此会导致验证结果会有很大波动,无法对模型进行可靠的评估,此时,最佳的做法就是使用K折交叉验证。

  K折交叉验证的思路就是将数据集划分为K个分区,通常K=4或K=5,创建K个相同的模型,将每个模型在K-1个分区上训练,并在剩下的一个分区进行验证评估,最后模型的验证分数等于K个验证分数的平均值。代码实现如下:

import numpy as np
#输入K值(默认5折)
#训练轮数
#训练数据
#训练目标数据(标签)
def k_fold(k=5, val_samples_num, num_epchos=100,train_data, train_target):  #训练集均分为K份   val_samples_num = len(train_data) // k   all_scores = []   for i in range(k):   print('now is %d fold' % i)   val_data = train_data[i*val_samples_num:(i+1)*val_samples_num]   val_targets = train_target[i*val_samples_num:(i+1)*val_samples_num]   partial_train_data = np.concatenate([train_data[:i*val_samples_num], train_data[(i+1)*val_samples_num :]], axis=0)   partial_train_targets = np.concatenate([train_target[:i*val_samples_num], train_target[(i+1)*val_samples_num :]], axis=0)   model = build_model()   model.fit(partial_train_data, partial_train_targets, epochs=num_epchos, batch_size=1, verbose=0)   val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)   all_scores.append(val_mae)   mae_mean = np.mean(all_scores)   print(mae_mean)

可以通过画出每轮mae的走势图来观察训练情况,判断是否有过拟合,同时找到一个相对好的轮数值。

### Lasso 回归中的 K 交叉验证 Lasso 回归是一种通过引入惩罚项来减少模型复杂性的线性回归方法。其目标函数可以表示为: \[ \min_{\beta} \frac{1}{2n} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1 \] 其中 \(X\) 是输入矩阵,\(y\) 是响应向量,\(\beta\) 是系数向量,而 \(\lambda\) 控制着正则化的强度。 为了找到最佳的 \(\lambda\) 值,在实际应用中通常采用 **K 交叉验证 (Cross Validation)** 方法。这种方法将数据集划分为 \(K\) 个子集,每次训练时使用 \(K-1\) 子集作为训练集,并保留剩下的一个子集用于测试。最终通过对不同 \(\lambda\) 的平均误差评估选出最优参数。 以下是 Python 和 MATLAB 中实现 Lasso 回归 K 交叉验证的具体代码示例以及理论说明。 --- #### 使用 Python 实现 Lasso 回归的 K 交叉验证 Python 提供了 `sklearn` 库支持快速构建和优化 Lasso 模型。下面是一个完整的代码示例[^4]: ```python from sklearn.linear_model import LassoCV from sklearn.datasets import make_regression import matplotlib.pyplot as plt # 创建模拟数据集 X, y = make_regression(n_samples=100, n_features=10, noise=0.1) # 初始化带有默认设置的 LassoCV 对象 lasso_cv = LassoCV(cv=5, random_state=0) # 设置 cv 参数为 5 表示五交叉验证 # 训练模型并自动选择 lambda lasso_cv.fit(X, y) # 输出选定的最佳 alpha(即 λ) print(f"Optimal Lambda: {lasso_cv.alpha_}") # 可视化不同的 lambda 下的均方误差 plt.plot(lasso_cv.alphas_, np.mean(lasso_cv.mse_path_, axis=1)) plt.xlabel('Lambda') plt.ylabel('Mean Squared Error') plt.title('MSE vs Lambda with Cross Validation') plt.show() ``` 上述代码展示了如何利用内置工具完成自动化调参过程,并绘制出 MSE 随 \(\lambda\) 改变的趋势图。 --- #### 使用 MATLAB 实现 Lasso 回归的 K 交叉验证 MATLAB 同样具备强大的统计建模能力,可通过 `lasso` 函数配合自定义逻辑轻松实现 K CV。以下是一段典型代码片段[^3]: ```matlab % 加载样本数据 load diabetes; % 定义预测变量与响应变量 X = [ones(size(diabetes.X,1),1), diabetes.X]; y = diabetes.y; % 执行带交叉验证的 Lasso 回归分析 [B Stats] = lasso(X, y, 'CV', 10); % 这里指定十交叉验证 % 绘制结果曲线 lassoPlot(B, Stats, 'PlotType', 'CV'); title('Lasso Regularization Path with Cross Validation'); xlabel('\lambda Values'); ylabel('|B_i| Coefficients Magnitude'); legend off; ``` 该脚本不仅计算出了每种可能稀疏程度下的估计偏差情况,还直观呈现了各特征重要性随约束增强的变化规律。 --- #### 关于 Lasso 回归 K 交叉验证的核心理论要点 1. **超参数调节的重要性** 正确选取正则化因子 (\(\lambda\)) 至关重要,因为它直接影响到哪些变量会被剔除掉以及整体拟合效果的好坏。如果取值过低,则可能导致欠罚现象;反之过高又容易引发过度简化问题。 2. **交叉验证的作用机制** 利用独立检验集合上的表现衡量候选方案优劣,从而有效缓解因单一划分方式带来的偶然波动影响。具体而言就是把原始资料随机分成若干份轮流充当验证组其余部分共同构成学习素材直至全部轮次结束再综合考量各个选项得分高低决定胜者归属[^1]. 3. **算法效率考量** 当前主流框架大多采用了路径追踪技术(LARS-Lasso),能够在较短时间内探索整个解空间范围内的潜在解决方案序列,极大地提升了运算速度的同时也保证了一定精度水平的要求得到满足[^2]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值