人工智能在诞生之初就已展现出了与电子游戏的亲密关系。—方面,其开创者们长期利用游戏 来测试人工智能程序的性能,如今的人工智能也已经具备了在各种复杂游戏中击败人类玩家的 能力。另—方面,随着人工智能技术的发展,人们也发现可以利用这项技术来辅助游戏设计 和游戏制作,从而提升开发效率,甚至赋予游戏更多的可能。[40] 近来各类人工智能生成内容 (Artificial Intelligence Generated Content, AIGC)技术的发展,也预示着人工智能技术在游戏领域的应用,将走向普及化和综合化的道路。
本章节将会从程序化内容生成、AIGC、智能 NPC以及虚拟玩家等方面,来介绍人工智能技术在电子游戏中的应用现状和前景。
2.1 游戏中的人工智能技术简介
对于产业界而言,借助人工智能技术来辅助游戏开发,能够起到提升效率和增加游戏可能性的 效果。其中,“提升效率”是指借助人工智能工具,人们可以缩减游戏开发的成本、减少游 戏开发时间,甚至提升游戏的质量和完成度; [42] 而“增加游戏可能性”则是指人工智能工具能 够为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。因此,游戏开发团队有足够的理由借助人工智能技术来完成游戏的设计和开发。
据中国游戏产业研究院出品的《游戏科技能力与科技价值研究报告》显示,有 81% 的的受访
者认为游戏对人工智能技术发展具有推动作用,游戏对人工智能技术的正向推动作用已成为高度共识。
总的来说,电子游戏与人工智能的结合有着广泛的可能,包括玩家建模、辅助设计、代码辅助 和代码自动生成等等。其中与游戏直接相关的应用主要包括:(1)构建游戏中的智能体;(2)
构建玩游戏的智能体;(3)程序化内容生成(Procedural Content Generation ,PCG)。
首先,“构建游戏中的智能体”是指构建游戏的非玩家角色(Non-player character),也就是 常说的 NPC。这方面的工作包括构建智能对象,创建其移动、寻路、攻击等行为,以及对话
等交互行为。游戏中的智能体是游戏的重要组成部分,为游戏内容增添了风采。
其次,“构建玩游戏的智能体”是狭义人工智能研究的主要任务,在第—章里已经进行了简单 的介绍。这项任务试图在不同类型的电子游戏场景下,创建与人类无异,甚至超过人类玩家水 平的玩家智能体。与“构建游戏中的智能体”有所不同的是,前者是在游戏中构建智能体,智 能体是游戏中的—个重要组成部分;而“玩游戏”的智能体则超脱于游戏之外,其本身并不是构成游戏的—部分。
最后,“程序化内容生成”则是近来在深度学习技术嶇起的背景下,对游戏产业影响最为深远 的—类应用。其内容包括利用人工智能来生成文字,帮助进行剧情设计、创作游戏剧本和情节 叙事;借助人工智能技术来生成图像,从而完成人物、道具、场景和用户界面的设计;利用人 工智能技术来生成音频,从而完成人物配音、游戏音效和配乐;利用人工智能技术来生成视频,创作游戏动画和特效;利用人工智能技术来创建游戏关卡,丰富游戏内容等等。
程序化内容生成虽在上世纪末就已经在电子游戏上得到了应用,但是其功能却相对局限。 2010 年后,得益于机器学习等技术的发展,程序化内容生成开始与新兴技术相结合,AIGC
开始在游戏产业得到广泛应用,这为游戏产业的革命性突破带来了可能。
如今,人工智能技术在电子游戏中的应用呈现出综合化与普及化的趋势,在功能越来越丰富、
强大的同时,还能够保证其易用性,能够让普通的游戏开发者快速地上手掌握,从而有潜力发展成为普遍的生产力工具。
2.2 程序化内容生成与 AIGC
程序化内容生成是近年来人工智能技术在游戏中的主要应用之—,其目标在于自动生成游戏的 关卡、地图、规则、图像、音乐等等。程序化内容生成的优势在于提供了高质量的产出,同时 还节省了开发的时间和资源。过去需要几周的工作量,现在只需要不到—分钟就可以从人工智能模型那里获取,这种突破性的进展的确可以算作是游戏生产方式的—场革命。
程序化内容生成的研究与应用有着悠久的历史。 应用这项技术的产品包括上世纪 80 年代的 —系列“类肉鸽(Rogue-like)”游戏、“轻肉鸽(Rogue-lite)”游戏、地牢(Dungeon)游 戏,类地牢(Dungeon-like)游戏或者策略类游戏。其中最为著名的案例就是由“短篇诗” (MicroProse)工作室在 1991 年出品的《文明》(Civilization),以及由暴雪(Blizzard)工作 室在 1998 年出品的《暗黑破坏神》(Diablo)。前者能够自动生成地图,并分配资源;后者则是开启了“装备驱动”游戏的热潮。
AIGC 的目标是以多模态的方式,在几乎没有人工干预的条件下,创造原创的图像、视频、音 乐、文本等内容。AIGC 所使用的技术主要有两类:文本方面,是以变压器(Transformer) 为基本结构,自监督学习(Self-supervised Learning)为学习方式,基础模型(Foundation Model)为基准的大型语言模型(Large Language Models); 而在图像生成方面,则是以生 成对抗网络(Generative Adversarial Networks)、自编码器(Autoencoder)以及近两年火热的扩散模型(Diffusion Model)为根本技术的生成模型。
如今,程序化内容生成已经在游戏关卡、游戏图像、游戏文本和游戏音乐等领域实现了突 破,并开始展现出覆盖游戏创作全过程的潜力。这—点在 2022 年《达利 2》(DALL-E 2)和
ChatGPT 等 AIGC 产品和技术的出现后格外明显。
2.2.1 游戏关卡生成
在绝大多数游戏中,最常见的元素是“关卡(level) ”。游戏关卡是游戏设计师灵感和才华的 体现,也是游戏精彩纷呈内容的保证。从古代的象棋、围棋残局,到马里奥、魂斗罗的 2D 地 图、再到传送门的 3D 谜题&#