1、模拟PID:
其中:
u(t)——调节器的输出信号;
e(t)——调节器的偏差信号,它等于给定值与测量值之差
KP——比例系数
TI ——积分时间
TD ——微分时间
u0 ——控制常量
KP/TI ——积分系数
KP/TD ——微分系数
2、数字PID:
k:采样信号,k=0,1,2,…
uk:第k 次采样时刻的计算机输出值
ek:第k 次采样时刻输入的偏差值
ek-1:第k-1 次采样时刻输入的偏差值
KP:比例系数
KI:积分系数(积分时间TI即为累积多少次/个T)
KD:微分系数
u0:开始进行PID 控制时的原始初值(应为前一次的给定值)
如果采样周期取得足够小,则以上近似计算可获得足够精确的结果,离散控制过程与连续控制过程十分接近。
在编程时,可写成:
Uo(n) = P *e(n) + I *[e(n)+e(n-1)+...+e(0)]+ D *[e(n)-e(n-1)]
P-----改变P可提高响应速度,减小静态误差,但太大会增大超调量和稳定时间。
I-----与P的作用基本相似,但要使静态误差为0,必须使用积分。
D-----与P,I的作用相反,主要是为了减小超调,减小稳定时间。
e(n)--------------------------本次误差
e(n)+e(n-1)+...+e(0)------所有误差之和
e(n)-e(n-1)------------------控制器输出与输入误差信号的微分(即误差的变化率),具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。