对当前公开的恶意流量相关数据集进行归类总结:
1、通用恶意流量数据集
1)2015数据集UNSW-NB2015
UNSW-NB15
官方网站:https://research.unsw.edu.au/projects/unsw-nb15-dataset
2015年由新南威尔士大学堪培拉分校网络靶场实验室的 IXIA PerfectStorm 工具创建的,用于生成真实的现代正常活动和合成的当代攻击行为的混合体。tcpdump 工具用于捕获 100 GB 的原始流量(例如 Pcap 文件)。该数据集有 9 种类型的攻击,分别是 Fuzzers、Analysis、Backdoors、DoS、Exploits、Generic、Reconnaissance、Shellcode 和 Worms。使用了 Argus、Bro-IDS 工具并开发了 12 种算法,以生成总共 49 个带有类标签的特征。这些功能在 UNSW-NB15_features.csv 文件中进行了介绍。
2)2009 ISCX NSL-KDD 数据集
官方网站:NSL-KDD 系列 |数据集 |研究 |加拿大网络安全研究所 |UNB
- 描述:KDD Cup 1999数据集的改进版本,解决了原始数据集重复样本过多的问题。
- 特点:适合用于入侵检测和机器学习模型的训练与测试。
3)2017 CICIDS2017数据集
官方网站:2017 年 IDS |数据集 |研究 |加拿大网络安全研究所 |UNB
入侵检测系统 (IDS) 和入侵防御系统 (IPS) 是抵御复杂且不断增长的网络攻击的最重要防御工具。由于缺乏可靠的测试和验证数据集,基于异常的入侵检测方法正在遭受一致且准确的性能演变。
我们对 1998 年以来现有的 11 个数据集的评估表明,大多数数据集都已经过时且不可靠。其中一些数据集缺乏流量多样性和数量,一些没有涵盖各种已知攻击,而另一些则对数据包