介绍
在本系列的前两篇文章中,我们描述了如何基于动态更新配置(欺诈检测规则)来实现灵活的数据流分区,以及如何利用 Flink 的 Broadcast 机制在运行时在相关算子之间分配处理配置。
直接跟上我们上次讨论端到端解决方案的地方,在本篇文章中,我们将描述如何使用 Flink 的 "瑞士军刀" —— Process Function 来创建一个量身定制的实现,以满足你的流业务逻辑需求。我们的讨论将在欺诈检测引擎的背景下继续进行,我们还将演示如何在 DataStream API 提供的窗口不能满足你的要求的情况下,通过自定义窗口来实现你自己的需求。特别的是,我们将研究在设计需要对单个事件进行低延迟响应的解决方案时可以做出权衡。
本文介绍了如何使用 Flink 的 ProcessFunction 创建低延迟的动态欺诈检测系统,详细阐述了如何处理时间窗口以满足低延迟要求,以及如何优化状态管理和计算效率。通过自定义窗口和状态管理,实现了对每条交易数据的即时响应,以满足金融领域的低延迟需求。
订阅专栏 解锁全文
694

被折叠的 条评论
为什么被折叠?



