UCI数据集使用

UCI数据集是一个常用的标准测试数据集。
下载地址:
http://www.ics.uci.edu/~mlearn/MLRepository.html

UCI数据可以使用Matlab的dlmread或textread读取,不过,需要先将不是数字的类别用数字,比如1/2/3等替换,否则读入不了数值,当字符了。
每个数据文件(.data)包含以“属性-值”对形式描述的很多个体样本的记录。对应的.info文件包含的大量的文档资料。(有些文件generate databases;他们不包含*.data文件。)作为数据集和领域知识的补充,在utilities目录里包含了一些在使用这一数据集时的有用资料。
下面以UCI中IRIS为例介绍一下数据集:
[1]
ucidata\iris中有三个文件:
Index
iris.data
iris.names
index为文件夹目录,列出了本文件夹里的所有文件,如iris中index的内容如下:
Index of iris
18 Mar 1996 105 Index
08 Mar 1993 4551 iris.data
30 May 1989 2604 iris.names
iris.data为iris数据文件,内容如下:
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
……
7.0,3.2,4.7,1.4,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
……
6.3,3.3,6.0,2.5,Iris-virginica
6.4,3.2,4.5,1.5,Iris-versicolor
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
……
如上,属性直接以逗号隔开,中间没有空格(5.1,3.5,1.4,0.2,),最后一列为本行属性对应的值,即决策属性Iris-setosa
iris.names介绍了irir数据的一些相关信息,如数据标题、数据来源、以前使用情况、最近信息、实例数目、实例的属性等,如下所示部分:
……
7. Attribute Information:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:
– Iris Setosa
– Iris Versicolour
– Iris Virginica
……
读取UCI数据集iris.data中数据:

[attrib1, attrib2, attrib3, attrib4, class] = textread(‘data\iris.data’, ‘%f%f%f%f%s’, ‘delim。iter’, ‘,’);
attrib = [attrib1’; attrib2’; attrib3’; attrib4’]’;
a = zeros(150, 1);
a(strcmp(class, ‘Iris-setosa’)) = 1;
a(strcmp(class, ‘Iris-versicolor’)) = 2;
a(strcmp(class, ‘Iris-virginica’)) = 3;
至此,属性值均保存到attrib中,类别值保存到数组a中。

UCI数据集可以使用最小二乘回归进行建模和预测。最小二乘回归是一种常见的线性回归方法,它通过最小化预测值与实际值之间的平方误差,来拟合一条最佳的直线或曲线。具体实现步骤如下: 1. 导入数据集,并进行数据预处理,包括数据清洗、特征选择、特征缩放等操作。 2. 将数据集分为训练集和测试集两部分。 3. 使用训练集数据进行模型训练,即通过最小二乘回归算法来拟合数据集,得到最佳的回归系数。 4. 使用测试集数据进行模型预测,即将测试集数据代入回归模型中,得到预测的结果,并与实际结果比较,计算误差。 5. 对误差进行分析,评估模型的性能,可以使用均方误差(MSE)、平均绝对误差(MAE)等指标来衡量模型的拟合效果。 在具体实现时,可以使用Python中的scikit-learn库中的LinearRegression类来实现最小二乘回归。代码示例: ```python from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error # 导入数据集 X, y = load_uci_dataset() # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建线性回归模型 lr = LinearRegression() # 使用训练集数据进行模型训练 lr.fit(X_train, y_train) # 使用测试集数据进行模型预测 y_pred = lr.predict(X_test) # 计算误差 mse = mean_squared_error(y_test, y_pred) mae = mean_absolute_error(y_test, y_pred) # 打印误差 print("Mean Squared Error:", mse) print("Mean Absolute Error:", mae) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值