133. Clone Graph 图的复制,运用了BFS

Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.


OJ's undirected graph serialization:

Nodes are labeled uniquely.

We use  # as a separator for each node, and  , as a separator for node label and each neighbor of the node.

As an example, consider the serialized graph {0,1,2#1,2#2,2}.

The graph has a total of three nodes, and therefore contains three parts as separated by #.

  1. First node is labeled as 0. Connect node 0 to both nodes 1 and 2.
  2. Second node is labeled as 1. Connect node 1 to node 2.
  3. Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.

Visually, the graph looks like the following:

       1
      / \
     /   \
    0 --- 2
         / \
         \_/

1.我的解答,看不懂题目,看了别人的代码

反正就是返回给定node的邻居节点。用了BFS的queue

/**
 * Definition for undirected graph.
 * struct UndirectedGraphNode {
 *     int label;
 *     vector<UndirectedGraphNode *> neighbors;
 *     UndirectedGraphNode(int x) : label(x) {};
 * };
 */
class Solution {
public:
    UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
        if(node == NULL) return NULL;
        //1.BFS遍历每个node,并为每个node创建数组[label,UndirectedGraphNode *]
        map<int, UndirectedGraphNode *>mp;
        queue<UndirectedGraphNode *>q;
        q.push(node);
        while(!q.empty()){
            UndirectedGraphNode *temp = q.front();
            q.pop();
            if(mp.find(temp->label) == mp.end()){ //意味着该点未被访问过
                UndirectedGraphNode *n = new UndirectedGraphNode(temp->label);
                mp[temp->label] = n;
                for(int i = 0; i < (temp->neighbors.size()); i++){
                    q.push(temp->neighbors[i]);
                }
            }
        }
        
        //2.BFS依然遍历每个node,然后对数组中的每个点都加入邻居点
        q.push(node);
        while(!q.empty()){
            UndirectedGraphNode *temp = q.front();
            q.pop();
            UndirectedGraphNode *target = mp[temp->label]; 
            if(target->neighbors.empty() && (!temp->neighbors.empty())){
                for(int i = 0; i < (temp->neighbors.size()); i++){
                    target->neighbors.push_back(mp[temp->neighbors[i]->label]);
                    q.push(temp->neighbors[i]);
                }
            }
        }
        return mp[node->label];
    }
};

2.别人的解释和代码

This problem is an application of graph traversal, which has two systematic methods: Bread-First Search (BFS) and Depth-First Search (DFS). In the following, I am going to assume that you are familiar with them and just focus on what I think is the most tricky part of this problem, that is, what else is needed beyond graph traversal to clone a graph?

In order to clone a graph, you need to have a copy of each node in the original graph. Well, you may not have too many ideas about it. Let's do an example.

Suppose we are given a graph {0, 1 # 1, 0}. We know that the graph has two nodes 0 and 1 and they are connected to each other.

We now start from 0. We make a copy of 0. Then we check 0's neighbors and we see 1. We make a copy of 1 and we add the copy to the neighbors of the copy of 0. Now the cloned graph is {0 (copy), 1 (copy)}. Then we visit 1. We make a copy of 1... well, wait, why do we make another copy of it? We already have one! Note that if you make a new copy of the node, these copies are not the same and the graph structure will be wrong! This is just what I mean by "the most tricky part of this problem". In fact, we need to maintain a mapping from each node to its copy. If the node has an existed copy, we simply use it. So in the above example, the remaining process is that we visit the copy of 1 and add the copy of 0 to its neighbors and the cloned graph is eventually {0 (copy), 1 (copy) # 1 (copy), 0 (copy)}.

Note that the above process uses BFS. Of course, you can use DFS. The key is the node-copy mapping, anyway.

(1)BFS
class Solution {
public:
    UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
        if (!node) return NULL;
        UndirectedGraphNode* copy = new UndirectedGraphNode(node -> label);
        mp[node] = copy;
        queue<UndirectedGraphNode*> toVisit;
        toVisit.push(node);
        while (!toVisit.empty()) {
            UndirectedGraphNode* cur = toVisit.front();
            toVisit.pop();
            for (UndirectedGraphNode* neigh : cur -> neighbors) {
                if (mp.find(neigh) == mp.end()) {
                    UndirectedGraphNode* neigh_copy = new UndirectedGraphNode(neigh -> label);
                    mp[neigh] = neigh_copy;
                    toVisit.push(neigh);
                }
                mp[cur] -> neighbors.push_back(mp[neigh]);
            }
        }
        return copy; 
    }
private:
    unordered_map<UndirectedGraphNode*, UndirectedGraphNode*> mp;
};


(2)DFS

class Solution {
public:
    UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
        if (!node) return NULL;
        if (mp.find(node) == mp.end()) {
            mp[node] = new UndirectedGraphNode(node -> label);
            for (UndirectedGraphNode* neigh : node -> neighbors)
                mp[node] -> neighbors.push_back(cloneGraph(neigh));
        }
        return mp[node];
    } 
private:
    unordered_map<UndirectedGraphNode*, UndirectedGraphNode*> mp;
};







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值