相关系数

pearson相关系数

Pearson 皮尔逊相关也称为积差相关(或积矩相关)是英国统计学家皮尔逊于20世纪提出的一种计算直线相关的方法。
适应范围:
(1)两个变两之间是线性关系,都是连续数据。
(2)两个变量的总体是正态分布,或接近正态的单峰分布
(3)两个变量的观测值是成对的,每对观测值之间相互独立

协方差公式:

在这里插入图片描述

标准差公式:

在这里插入图片描述

相关系数公式

在这里插入图片描述

相关系数范围

在这里插入图片描述

Spearman 相关系数

评估两个变量X、Y之间的相关性,其中变量间的相关性可以使用单调函数来描述。并经常用希腊字母ρ(rho)表示其值。
适应范围:
只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以使用。

计算公式

假设两个随机变量分别为X、Y(也可以看做两个集合),它们的元素个数均为N,两个随即变量取的第i(1<=i<=N)个值分别用Xi、Yi表示。对X、Y进行排序(同时为升序或降序),得到两个元素排行集合x、y,其中元素xi、yi分别为Xi在X中的排行以及Yi在Y中的排行。将集合x、y中的元素对应相减得到一个排行差分集合d,其中di=xi-yi,1<=i<=N。随机变量X、Y之间的斯皮尔曼等级相关系数可以由x、y或者d计算得到,其计算方式如下所示:
由排行差分集合d计算而得(公式一):
斯皮尔曼等级相关系数公式一
由排行集合x、y计算而得(斯皮尔曼等级相关系数同时也被认为是经过排行的两个随即变量的皮尔逊相关系数,以下实际是计算x、y的皮尔逊相关系数)(公式二):
斯皮尔曼等级相关系数公式二

Kendall 相关系数

肯德尔相关系数是一个用来测量两个随机变量相关性的统计值。并经常用希腊字母τ(tau)表示其值。适应范围:与斯皮尔曼相关系数对数据条件的要求相同。

计算公式

假设两个随机变量分别为X、Y(也可以看做两个集合),它们的元素个数均为N,两个随即变量取的第i(1<=i<=N)个值分别用Xi、Yi表示。X与Y中的对应元素组成一个元素对集合XY,其包含的元素为(Xi, Yi)(1<=i<=N)。当集合XY中任意两个元素(Xi, Yi)与(Xj, Yj)的排行相同时(也就是说当出现情况1或2时;情况1:Xi>Xj且Yi>Yj,情况2:Xi<Xj且Yi<Yj),这两个元素就被认为是一致的。当出现情况3或4时(情况3:Xi>Xj且Yi<Yj,情况4:Xi<Xj且Yi>Yj),这两个元素被认为是不一致的。当出现情况5或6时(情况5:Xi=Xj,情况6:Yi=Yj),这两个元素既不是一致的也不是不一致的。
这里有三个公式计算肯德尔相关系数的值
公式一:
肯德尔相关系数公式1
其中C表示XY中拥有一致性的元素对数(两个元素为一对);D表示XY中拥有不一致性的元素对数。

注意:这一公式仅适用于集合X与Y中均不存在相同元素的情况(集合中各个元素唯一)。
公式二:
肯德尔相关系数公式2
注意:这一公式适用于集合X或Y中存在相同元素的情况(当然,如果X或Y中均不存在相同的元素时,公式二便等同于公式一)。

其中C、D与公式一中相同;
肯德尔相关系数公式2-子公式1;肯德尔相关系数公式2-子公式2;肯德尔相关系数公式2-子公式3
N1、N2分别是针对集合X、Y计算的,现在以计算N1为例,给出N1的由来(N2的计算可以类推):

将X中的相同元素分别组合成小集合,s表示集合X中拥有的小集合数(例如X包含元素:1 2 3 4 3 3 2,那么这里得到的s则为2,因为只有2、3有相同元素),Ui表示第i个小集合所包含的元素数。N2在集合Y的基础上计算而得。

公式三:
肯德尔相关系数公式3

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页