Solve It(数论,二分迭代求值)

                                                                                      Solve It

Input:standard input

Output:standard output

Time Limit: 1 second

Memory Limit: 32 MB

Solve the equation:
        p
*e-x+q*sin(x) + r*cos(x) + s*tan(x) +t*x2 + u = 0
        where 0 <= x <= 1.

Input

Input consists of multiple test cases and terminated by an EOF. Each test case consists of 6 integers in a single line:p, q,r, s,t and u (where0 <= p,r <= 20 and-20 <= q,s,t <= 0). There will be maximum 2100 lines in the input file.

Output

For each set of input, there should be a line containing the value ofx, correct upto 4 decimal places, or the string "No solution", whichever is applicable.

Sample Input

0 0 0 0 -2 1
1 0 0 0 -1 2
1 -1 1 -1 -1 1

Sample Output

0.7071
No solution
0.7554


题目解析:

       首次,遇到二分求方程。第一次没求出来,之后经同学指点之后就连续A了两道。挺爽的^O^。题目说给出p,q,r,s,u五个系数,叫你求出方程的解。

思路解析:

     我们在中学的时候就学过了,二分迭代求值。因此,我们可以从中入手。即,当f(x1)*f(x2) <= 0时,方程必有解。OK,既然我们解决了判断方程是否有解,但是要如何得到解呢?显然,我们可以根据我们刚才说的二分迭代。我们可以根据高等数学中的知识,可以判断出一个方程的单调性。因此,之后可以根据单调性的情况进行很好的二分。

下面我们根据函数的不同单调性来给出不同的判断条件:

 单调递增:

       mid = (x1+x2)/2;

 -------->f(mid)  < 0  x1 = mid;

 -------->f(mid)  > 0  x2 = mid;

例如,假如要求的解为2。

单调递减:

     mid = (x1+x2)/2;

-------->f(mid) > 0 x1 = mid;

------->f(mid)  < 0 x2 = mid;

例如,假如要求的解为4。

OK。基本算法就这些了。别的就是处理的细节问题了。然后,这题还要注意e^x的函数表示,我刚开始的时候,并不知道要如何表示后来才知道e^x  =  exp(x);别的自己看代码吧。


#include <iostream>
#include <algorithm>
#include <string>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

const double EPS = 1e-14;
double p,q,r,s,t,u;
double Check(double x)
{
    double y;
    y = p*exp(-x)+q*sin(x)+r*cos(x)+s*tan(x)+t*x*x+u;
    return y;
}
int main()
{
    while(scanf("%lf%lf%lf%lf%lf%lf",&p,&q,&r,&s,&t,&u)!=EOF)
    {
         double x1 = 0.0,x2 = 1.0;
         if(Check(x1)*Check(x2)<=EPS){
             double mid;
             while(x2-x1>EPS)
             {
                 mid = (x1+x2)/2.0;
                 if(Check(mid) < 0)
                    x2 = mid;
                 else
                   x1 = mid;
             }
             printf("%.4lf\n",mid);
         }else
         {
             printf("No solution\n");
         }

    }
    return 0;


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值