题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1284
把问题抽象成多重背包的问题,即
有三种商品,
第一种价值1,体积为1
第二种价值2,体积为2
第三种价值3,体积为3
背包容量为n
求背包恰好装满的方案数(因为所有物品的价值/体积都是1,所以肯定是装满,所以转化成普通多重背包最优方案数)
状态转移方程为
dp[i]=max(dp[i],dp[i-weight]+value);
number[i]=number[i-1]+number[i-2]+number[i-3];
AC代码如下:
/*HDOJ1284
作者:陈佳润
2013-04-18
*/
#include<stdio.h>
#include<string.h>
#define max(a,b) (a>b?a:b)
__int64 number[32770];
int dp[32770];
int n;
void Multiply_Pack(int value,int weight){
int j;
for(j=weight;j<=n;j++){
dp[j]=max(dp[j],dp[j-weight]+value);
if(dp[j]==dp[j-weight]+value)//如果是number[i-1]、number[i-2]、number[i-3]中的一种
number[j]+=number[j-weight];//则加上它
}
}
int main(){
while(scanf("%d",&n)!=EOF){
//初始化
memset(dp,0,sizeof(dp));
dp[0]=0;
memset(number,0,sizeof(number));
number[0]=1;
//多重背包
Multiply_Pack(1,1);
Multiply_Pack(2,2);
Multiply_Pack(3,3);
//输出
printf("%I64d\n",number[n]);
}
return 0;
}