Leetcode 307: Range Sum Query - Mutable 之BIT

题目传送门:
Leetcode 307.Range Sum Query - Mutable

题目

Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.

The update(i, val) function modifies nums by updating the element at index i to val.

Example:

Given nums = [1, 3, 5]
sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8

Note:
1. The array is only modifiable by the update function.
2. You may assume the number of calls to update and sumRange function is distributed evenly.

代码是这样给的:

public class NumArray {

    public NumArray(int[] nums) {

    }

    public void update(int i, int val) {

    }

    public int sumRange(int i, int j) {

    }
}

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray obj = new NumArray(nums);
 * obj.update(i,val);
 * int param_2 = obj.sumRange(i,j);
 */
思路

一开始用的方法(这个思路来自Range Sum Query - immutable):

  1. 构造函数中, 累加nums[i],使新的nums[i]表示原nums[0]加到nums[i].
  2. update函数,利用nums[i]-nums[i-1] (0特殊考虑)为原nums[i]的值,求出与更新值之间的diff差,依次修改大于等于i的nums值.
  3. sumRange,直接用nums[j]-nums[i-1] ,(i==0特殊考虑)

这个思路简单,但由于TLE(time limit exceed), 所以只好另找方法

题目描述中,有个tag,显示 Segment Tree. Binary Indexed Tree

顺藤摸瓜,我查了以下BIT(Segment Tree没咋看):
搞懂树状数组
树状数组详细讲解

还有一些细节我不是很理解, lowbit的延展性(确定哪些数据是有联系的).记忆吧.

思路1:一般方法

public class NumArray {
    public int[] nums;
    public NumArray(int[] nums) {
            for(int i=1; i<nums.length;i++){
                nums[i]+=nums[i-1];
            }
            this.nums = nums;
    }

    public void update(int i, int val) {
        int diff;
        if(i==0){
            diff = nums[i]-val;
        }
        else{
            diff = nums[i]-nums[i-1]-val;
        }
        for(int k=i;k<nums.length; k++){
            nums[k]-=diff;
        }
    }

    public int sumRange(int i, int j) {
        if(i==0){
            return nums[j];
        }
        else {
            return nums[j]-nums[i-1];
        }
    }
}

思路2:BIT

public class NumArray {
   public int[] BIT;
    public int[] nums;
    public int n;
    public NumArray(int[] nums) {
        n = nums.length+1;
        BIT = new int[n];
        for(int i=0; i<nums.length;i++){
            init(i,nums[i]);
        }
        this.nums = nums;
    }

    public int lowbit(int k){
        return k&(-k);
    }

    public void init(int i,int val){
        i++;
        while(i<n){
            BIT[i] += val;
            i += lowbit(i);
        }
    }

  void update(int i, int val) {
        int diff = val-nums[i];
        nums[i]=val; // have to . should be careful
        init(i,diff);
    }

    public int getSum(int i){
        i++;
        int sum=0;
        while(i>0){
            sum +=BIT[i];
            i-=lowbit(i);
        }
        return sum;
    }

    public int sumRange(int i, int j) {
       return getSum(j)-getSum(i-1);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值