神经网络验证集的loss比训练集的loss要小

这种现象的可能原因在这篇文章Why is my validation loss lower than my training loss?里已经总结了比较全面。

以下内容,再做个补充。

当训练时,使用权重,会对loss的结果有很大影响。以使用class_weight为例,

#权重小的情况
{
   0: 0.00041631973355537054, 1: 1.955072435433733e-05, 2: 1.887112905965164e-05, 3: 0.00021570319240724764}

#训练中的loss也很小,验证集的loss相对就大了
Epoch 1/256
61/61 [==============================] - 35s 569ms/step - loss: 2.2395e-05 - r_square: 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值