B样条曲线(记录)

        B样条曲线的生成靠的两点:

                1、控制点

                2、基函数

        B样条曲线的基函数是一个De Boor的递归表达式[1]:

                B_{i},_{0}(u)=\left\{\begin{matrix} 1, u_{i}\leqslant u\leqslant u_{i+1}\\0, otherwise \end{matrix}\right.                                                                (1)

                B_{i},_{d}(u)=\frac{u-u_{i}}{u_{i+d}-u_{i}}B_{i},_{d-1}(u)+\frac{u_{i+d+1}-u}{u_{i+d+1}-u_{i+1}}B_{i+1},_{d-1}(u)                    (2)

        其中B_{i},_{d}(u)是第id阶基函数。

        而B样条曲线可以表示为[2]:

                P(u)=\sum_{i=0}^{n}p_{i}B_{i},_{d}(u)                                                                        (3)

        如何理解上式?首先,我们知道,如果一个函数在定义域内处处可微(处处连续),则可以通过被泰勒展开成一个多项式级数。换言之,只要阶数足够,对于任意的连续可微曲线,都可以用一个多项式去逼近。B样条曲线的表达式就是一个d阶多项式。它的定义域通过节点区间来表示[1][2]。

        接下来,我们通过一个简单的例子来逐步理解B样条曲线。

        我们以3个控制点的B样条曲线为例。其表达式为:

                P(u)=p_{0}B_{0},_{d}(u)+p_{1}B_{1},_{d}(u)+p_{2}B_{2},_{d}(u)

        现在我们来看一下上式的3个基函数。由式(2),我们可知d-1阶的基函数如下图:

d-1阶基函数的个数为:3\cdot 2-2=4,简单归纳一下:

        设N为控制点的个数,则d阶的基函数个数也为N,而d-1阶的基函数个数为:N\cdot 2-(N-1)=N+1。即低一阶的基函数个数是高一阶加一。则0阶的基函数的个数为:

\left ( \left ( \left ( \left ( \left ( N \right )+1 \right )+1 \right )+1 \right )+...+1 \right )=N+d

        另外,对于多项式的阶,必须小于已知数据点数的个数。于是我们设d=N-1。则0阶的基函数个数为2N-1,为奇数。

        接下来,我们来看看节点区间。对于0阶基函数,一个基函数对应一个节点区间。所以节点区间的个数,我们以3个0阶基函数为例:

为3个区间,共计4个节点,也即节点数为0阶基函数个数加一,即2N个节点。

        另外,当我们选取一个参数u时,由于节点区间不相交,所以我们由式(1)可知0阶基函数,由且只有一个基函数的值为1。其余皆为0。考虑如下情况:

u取在区间[u_{i},u_{i+1})时,我们可以发现在1阶基函数,所有基函数相机等于1。因为0阶基函数只有一个起作用,而其余基函数的值为0.递推到1阶,所有1阶基函数,变为2个基函数起作用。而这两个基函数相加:B_{i-1},_{1}(u)+B_{i},_{1}(u)=\frac{u_{i+1}-u}{u_{i+1}-u_{i}}B_{i},_{0}(u)+\frac{u-u_{i}}{u_{i+1}-u_{i}}B_{i},_{0}(u)=B_{i},_{0}=1

        同理,到了2阶基函数,我们可以得到:

B_{i-2},_{2}(u)+B_{i-1},_{2}(u)=B_{i-1},_{1}(u)           B_{i-1},_{2}(u)+B_{i},_{2}(u)=B_{i},_{1}(u)

也即2阶基函数相加也等于1。以此类推,我们得出一个结论,d阶基函数相加等于1。

        现在来考虑如下的递归过程。假设我们有4个控制点,阶数d=3。于是基函数的传递如下:

假如我们把u取在[u_{0},u_{1})内,则B_{0},_{0}=1,而其余0阶基函数为0。按照以上的结论,我们知道

B_{0},_{0}(u)=B_{-1},_{1}(u)+B_{0},_{1}(u)=1,而实际上,没有B_{-1},_{1}(u)。于是到了1阶,基函数之和不等于1。而且每进一阶,基函数之和都会有损失。

        同时,我们还希望,当u取u=u_{0}或者u=u_{2n-1}时,曲线与控制点0或者控制点n重合。换句话说,就是曲线在端点处与控制点重合,也即B_{0},_{3}(u)=1,而其余3阶基函数等于0。很明显,u=u_{0}无法使以上条件成立。为了实现以上条件,必须解决基函数之和损失的问题。那么u就必须取在区间[u_{3},u_{4})内。当u=u_{3}时,递归到3阶可得B_{0},_{3}(u)=1,而其余为0。当u=u_{4}时,递归到3阶可得B_{3},_{3}(u)=1,而其余为0。因此为了满足基函数之和为1。而且当u取在区间端点时,曲线与控制点重合。我们必须舍弃[u_{3},u_{4})之外的区间。这个操作叫“重复度”。具体的操作是令u_{3}之前的节点都等于u_{3}。而u_{4}之后的节点都等于u_{4}。也即[u_{d},u_{d+1})区间之外,其余区间节点都分别赋值u_{d},u_{d+1}

        例如,原本各区间为[u_{0}=0,u_{1}=1),[u_{1}=1,u_{2}=2),[u_{2}=2,u_{3}=3),[u_{3}=3,u_{4}=4),[u_{4}=4,u_{5}=5),[u_{5}=5,u_{6}=6),[u_{6}=6,u_{7}=7]。进行“重复度”操作后,节点区间变为:[u_{0}=3,u_{1}=3),[u_{1}=3,u_{2}=3),[u_{2}=3,u_{3}=3),[u_{3}=3,u_{4}=4),[u_{4}=4,u_{5}=4),[u_{5}=4,u_{6}=4),[u_{6}=4,u_{7}=4],甚至干脆,我们取u_{3}=0,u_{4}=1

        接下来,我们设\alpha =\frac{u_{i+1}-u}{u_{i+1}-u_{i}},\beta =\frac{u-u_{i}}{u_{i+1}-u_{i}},我们可以得到如下的基函数系数传递图:

则我们可以得到d阶第i个基函数为B_{i},_{d}(u)=Q_{i},_{d}\alpha ^{d-i}\beta ^{i}B_{d},_{0}(u)=Q_{i},_{d}\alpha ^{d-i}\beta ^{i},其中Q_{i},_{d}为如下分布的系数:

以上三角序列为杨辉三角序列,因此Q_{i},_{d}=C^{i}_{d},i\in [0,d]

参考:

1、样条曲线曲面-3:BSpline的原理

2、详解B样条曲线

  • 9
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值