【Linear Algebra】行列式(知识归纳)

1. 行列式

本文重点在知识归纳,不帮助理解

1.1 行列式概念

n 阶行列式(determinant)

∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{vmatrix} a11a21...an1a12a22...an2.........a1na2n...ann

完全展开式: ∑ j 1 j 2 . . . j n ( − 1 ) τ ( j 1 j 2 . . . j n ) a 1 j 1 a 2 j 2 . . . a n j n \sum_{j_1j_2...j_n}(-1)^{\tau(j_1j_2...j_n)}a_{1j_1}a_{2j_2}...a_{nj_n} j1j2...jn(1)τ(j1j2...jn)a1j1a2j2...anjn

  • τ ( j 1 j 2 . . . j n ) \tau(j_1j_2...j_n) τ(j1j2...jn) 中的排列为逆序数,大数排小数前即一个逆序。如 2431 中,21,43,41,31 是逆序,逆序数是4,为偶排列。

拉普拉斯展开(Laplace),这里为行展开:

∣ A ∣ = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n = ∑ k = 1 n a i k A i k , i = 1 , 2.. n |A| = a_{i1}A_{i1} + a_{i2}A_{i2} + ... +a_{in}A_{in} = \sum_{k=1}^na_{ik}A_{ik},i = 1,2..n A=ai1Ai1+ai2Ai2+...+ainAin=k=1naikAiki=1,2..n

  • 代数余子式(cofactor): A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j}M_{ij} Aij=(1)i+jMij
  • 余子式(minor): M i j M_{ij} Mij,即划去 a i j a_{ij} aij 所在行和列的元素,剩下的元素组成的行列式(n-1 阶)
  • 还可以按列展开,类似行展开,省略

1.2 行列式性质

  1. 经过转置后,行列式的值不变,即 ∣ A T ∣ = ∣ A ∣ |A^T| = |A| AT=A
  2. 两行或两列互换位置,行列式的值变号
  3. 某行(列)有公因子 k k k 可提到行列式外
  4. 行列式的某行(列)是两个元素之和,可把行列式拆成两个行列式之和
  5. 把某行(列)的 k k k 倍加到另一行(列),行列式的值不变

总结一下可直接判断行列式为 0 的情况

  • 两行(列)相同,行列式的值为 0
  • 某行(列)元素全为 0 ,行列式为 0
  • 两行(列)对应元素成比例,行列式为 0

1.3 几个重要公式

  1. 上(下)三角行列式的值: a 11 a 22 . . . a n n a_{11}a_{22}...a_{nn} a11a22...ann(主对角元素的积)
  2. 副对角线的行列式的值: ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 . . . a n 1 (-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}...a_{n1} (1)2n(n1)a1na2,n1...an1 (后面的为副对角线元素的积)
  3. 特殊的拉普拉斯展开,如果 A A A B B B 分别是 m m m 阶和 n n n 阶矩阵,则

∣ A ∗ O B ∣ = ∣ A O ∗ B ∣ = ∣ A ∣ ⋅ ∣ B ∣ ,   ∣ O A B ∗ ∣ = ∣ ∗ A B O ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \begin{vmatrix} A & * \\ O & B \\ \end{vmatrix} = \begin{vmatrix} A & O \\ * & B \\ \end{vmatrix} = |A|\cdot|B| ,~ \begin{vmatrix} O & A \\ B & * \\ \end{vmatrix} = \begin{vmatrix} * & A \\ B & O \\ \end{vmatrix} = (-1)^{mn}|A|\cdot|B| AOB=AOB=AB, OBA=BAO=(1)mnAB

  1. 范德蒙行列式(Vandermonde)

∣ 1 1 . . . 1 x 1 x 2 . . . x n x 1 2 x 2 2 . . . x n 2 . . . . . . . . . . . . x 1 n − 1 x 2 n − 1 . . . x n n − 1 ∣ = ∏ 1 ≤ j &lt; i ≤ n ( x i − x j ) \begin{vmatrix} 1 &amp; 1 &amp; ... &amp; 1 \\ x_1 &amp; x_2 &amp; ... &amp; x_n \\ x_1^2 &amp; x_2^2 &amp; ... &amp; x_n^2 \\ ... &amp; ... &amp; ... &amp; ...\\ x_1^{n-1} &amp; x_2^{n-1} &amp; ... &amp; x_n^{n-1} \\ \end{vmatrix} = \prod_{1 \leq j &lt; i \leq n}(x_i - x_j) 1x1x12...x1n11x2x22...x2n1...............1xnxn2...xnn1=1j<in(xixj)

1.4 n 阶方阵行列式公式

  • ∣ A T ∣ = ∣ A ∣ |A^T| = |A| AT=A A A A 为 n 阶方阵)
  • ∣ k A ∣ = k n ∣ A ∣ |kA| = k^n|A| kA=knA A A A 为 n 阶方阵)
  • ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB| = |A|\cdot|B| AB=AB A A A B B B 均为 n 阶方阵)
  • ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*| = |A|^{n-1} A=An1 A A A 为 n 阶方阵, A ∗ A^* A A A A 的伴随矩阵)
  • ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{-1}| = |A|^{-1} A1=A1 A A A 为 n 阶可逆方阵, A − 1 A^{-1} A1 A A A 的逆矩阵)
  • ∣ A ∣ = ∏ i = 1 n λ i |A| = \prod_{i = 1}^n\lambda_i A=i=1nλi A A A 为 n 阶方阵, λ \lambda λ A A A 的特征值)
  • A ∼ B ,   则   ∣ A ∣ = ∣ B ∣ A \sim B, ~则~|A| = |B| AB,  A=B

1.5 代数余子式补充

  1. 行列式任一行(列)元素与另一行(列)元素的代数余子式乘积之和为 0
  2. A A A 为 n 阶矩阵, A ∗ A^* A A A A 的伴随矩阵,则 A A ∗ = A ∗ A = ∣ A ∣ E AA^* = A^*A = |A|E AA=AA=AE

1.6 补充

行列式 ∣ A ∣ |A| A 是否为零的判定

行 列 式   ∣ A ∣ = 0 ⇔ 矩 阵   A   不 可 逆 ⇔ 秩   r ( A ) &lt; n ⇔ A x = 0   有 非 零 解 ⇔   0   是 矩 阵   A   的 特 征 值 ⇔ A   的 列 ( 行 ) 向 量 线 性 相 关 \begin{aligned} 行&amp;列式~|A| = 0\\ \Leftrightarrow &amp; 矩阵~A~不可逆\\ \Leftrightarrow &amp; 秩~r(A) &lt; n\\ \Leftrightarrow &amp; A\bm{x}=0~有非零解\\ \Leftrightarrow &amp; ~0~是矩阵~A~的特征值\\ \Leftrightarrow &amp; A~的列(行)向量线性相关\\ \end{aligned}  A=0 A  r(A)<nAx=0  0  A A 线


附:关于行列式的理解

矩阵即是映射,行列式就是“体积”扩大率,如此一来上面的性质是不是就好理解了呢。

最后推荐《程序员的数学》这本书,有助于你理解各种含义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值