随机过程

本文深入探讨随机过程,涵盖概率论基础,如随机变量函数的概率密度和基本公式,以及随机过程的一维和二维概率分布、数字特征、广义平稳随机过程、各态历经过程。此外,还讨论了随机过程的联合分布、互相关函数和功率谱等概念。
摘要由CSDN通过智能技术生成

随机过程

1 概率论基础

(1)随机变量函数的概率密度

对于任意的单调函数 g ( x ) g(x) g(x),都有
f Y ( y ) = f X ( x ) ∣ J ∣ x = g − 1 ( y ) ( J = d x d y ) f_Y(y)=f_X(x)|J|_{x=g^{-1}(y)} (J=\frac{dx}{dy}) fY(y)=fX(x)Jx=g1(y)(J=dydx)
对于非单调函数,可以根据单调性分段。


例: 考虑一个平方律检波的例子,假定输入输出的关系为
Y = b X 2 Y=bX^2 Y=bX2
求Y的概率密度
解: 由于 Y Y Y的值不可能为负,故 y &lt; 0 y&lt;0 y<0时, f Y ( y ) = 0 f_Y(y)=0 fY(y)=0。若 y &gt; 0 y&gt;0 y>0,这是对于任意的 y y y,有两个 x x x值与之对应,即
x 1 = y / b , x 2 = − y / b x_{1}=\sqrt{y / b}, \quad x_{2}=-\sqrt{y / b} x1=y/b ,x2=y/b \ 由于 J 1 = d x 1 d y = 1 2 b y , J 2 = d x 2 d y = − 1 2 b y J_{1}=\frac{\mathrm{d} x_{1}}{\mathrm{d} y}=\frac{1}{2 \sqrt{b y}}, J_{2}=\frac{\mathrm{d} x_{2}}{\mathrm{d} y}=-\frac{1}{2 \sqrt{b y}} J1=dydx1=2by 1,J2=dydx2=2by 1,因此
f Y ( y ) = 1 2 b y [ f x ( y / b ) + f X ( − y / b ) ] ( y &gt; 0 ) f_{Y}(y)=\frac{1}{2 \sqrt{b y}}\left[f_{x}(\sqrt{y / b})+f_{X}(-\sqrt{y / b})\right] \quad(y&gt;0) fY(y)=2by 1[fx(y/b )+fX(y/b )](y>0)


(2)基本公式

E X = ∫ − ∞ + ∞ x f ( x ) d x EX=\int_{-\infty}^{+\infty} x f(x) \mathrm{d} x EX=+xf(x)dx
D X = E ( X − E X ) = E X 2 − E 2 X DX=E(X-EX)=EX^2-E^2X DX=E(XEX)=EX2E2X
Cov ⁡ ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ] = E [ X Y ] − E X E Y \operatorname{Cov}(X, Y)=E[(X-EX)(Y-EY)]=E[X Y]-EXEY Cov(X,Y)=E[(XEX)(YEY)]=E[XY]EXEY
ρ X Y = Cov ⁡ ( X , Y ) D ( X ) D ( Y ) \rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}} ρ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值