随机过程
1 概率论基础
(1)随机变量函数的概率密度
对于任意的单调函数 g ( x ) g(x) g(x),都有
f Y ( y ) = f X ( x ) ∣ J ∣ x = g − 1 ( y ) ( J = d x d y ) f_Y(y)=f_X(x)|J|_{x=g^{-1}(y)} (J=\frac{dx}{dy}) fY(y)=fX(x)∣J∣x=g−1(y)(J=dydx)
对于非单调函数,可以根据单调性分段。
例: 考虑一个平方律检波的例子,假定输入输出的关系为
Y = b X 2 Y=bX^2 Y=bX2
求Y的概率密度
解: 由于 Y Y Y的值不可能为负,故 y < 0 y<0 y<0时, f Y ( y ) = 0 f_Y(y)=0 fY(y)=0。若 y > 0 y>0 y>0,这是对于任意的 y y y,有两个 x x x值与之对应,即
x 1 = y / b , x 2 = − y / b x_{1}=\sqrt{y / b}, \quad x_{2}=-\sqrt{y / b} x1=y/b,x2=−y/b\ 由于
J 1 = d x 1 d y = 1 2 b y , J 2 = d x 2 d y = − 1 2 b y J_{1}=\frac{\mathrm{d} x_{1}}{\mathrm{d} y}=\frac{1}{2 \sqrt{b y}}, J_{2}=\frac{\mathrm{d} x_{2}}{\mathrm{d} y}=-\frac{1}{2 \sqrt{b y}} J1=dydx1=2by1,J2=dydx2=−2by1,因此
f Y ( y ) = 1 2 b y [ f x ( y / b ) + f X ( − y / b ) ] ( y > 0 ) f_{Y}(y)=\frac{1}{2 \sqrt{b y}}\left[f_{x}(\sqrt{y / b})+f_{X}(-\sqrt{y / b})\right] \quad(y>0) fY(y)=2by1[fx(y/b)+fX(−y/b)](y>0)
(2)基本公式
E X = ∫ − ∞ + ∞ x f ( x ) d x EX=\int_{-\infty}^{+\infty} x f(x) \mathrm{d} x EX=∫−∞+∞xf(x)dx
D X = E ( X − E X ) = E X 2 − E 2 X DX=E(X-EX)=EX^2-E^2X DX=E(X−EX)=EX2−E2X
Cov ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ] = E [ X Y ] − E X E Y \operatorname{Cov}(X, Y)=E[(X-EX)(Y-EY)]=E[X Y]-EXEY Cov(X,Y)=E[(X−EX)(Y−EY)]=E[XY]−EXEY
ρ X Y = Cov ( X , Y ) D ( X ) D ( Y ) \rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}} ρ